

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS
 Page

Guest Editoral: Special Issue from the ISCA CATA 2021 . 75
Gordon Lee, Ajay Bandi, and Mohammad Hossain

Improvement of Apriori Algorithm for Missing Itemset Identification

and Faster Execution . 76
 Anjan Dutta, Runba Ganguli, Punyasha Chatterjee, Narayan C. Debnath,

and Soumya Sen

An Adaptable Memory System Using Reconfigurable Row DRAM to

Improve Performance of Multi core for Big Data . 84
 Nagi Mekhiel

A Survey of Data Clustering for Cancer Subtyping . 92
 Yan Yan and Frederick C. Harris, Jr.

Clustered Particle Swarm Optimization Using Self-Organizing Maps 115
 Yongwon Park, Harika Kilari, and Sanjeev Baskiyar

* “International Journal of Computers and Their Applications is Peer Reviewed”.

Volume 28, No. 2, June 2021 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…278 Mankato Ave, #220, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2021 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Wenying Feng, Professor
Department of Computer Science

Department of Mathematics
Trent University

Peterborough, Ontario, Canada K9L 0G2
Email: wfeng@trentu.ca

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston
Clear Lake, USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology
Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada
Reno, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
hongpeng@brandeis.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science
and Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University
for Technology
Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Juan C. Quiroz
Sunway University, Malaysia
juanq@sunway.edu.my

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York
at Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University,
USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California,
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca-hq.org/
mailto:rkarne@towson.edu

IJCA, Vol. 28, No. 2, June 2021 75

ISCA Copyright© 2021

Guest Editorial:
Special Issue from the ISCA CATA 2021

This Special Issue of the IJCA is a collection of four papers submitted for the 36th International Conference on

Computer and Their Applications (CATA 2021). However, the conference was canceled due to the COVID-19
pandemic. The program committee of CATA 2021 carefully reviewed all the submitted papers and invited the authors
of eight papers to submit extended conference papers for this special issue. Finally, four papers were selected for
publication in ISCA special issue. Each paper was evaluated by at least two reviewers, judging the originality,
technical contribution, significance, and quality of the manuscript. The papers in this special issue cover a wide range
of research interests in computers and applications. The topics and main contributions of the papers are briefly
summarized below.

ANJAN DUTTA of Techno International New Town, Kolkata, India, RUNA GANGULI The Bhawanipur
Education Society College, Kolkata, India, PUNYASHA CHATTERJEE School of Mobile Computing and
Communication, Jadavpur University, Kolkata, India, NARAYAN C. DEBNATH School of Computing and
Information Technology, Eastern International University, Thu DauMot, Vietnam, SOUMYA SEN A.K. Choudhury
School of Information Technology, University of Calcutta, India, wrote their paper “Improvement of Apriori
Algorithm for Missing Itemset Identification and Faster Execution.” In this work, the authors proposed a strategy to
identify business-critical infrequent item sets that would otherwise be pruned using the traditional pruning strategy.
Furthermore, a novel approach is proposed in the paper to evaluate whether an item is interesting or not at a
considerably reduced computational time.

NAGI MEKHIEL of Ryerson University, Toronto, ON, Canada, authored the paper titled “An Adaptable Memory
System Using Reconfigurable Row DRAM To Improve Performance Of Multi Core For Big Data.” In this paper, the
author presented an adaptable memory using reconfigurable row DRAM (RRDRAM) to allow many accesses that
map to different physical rows to form one adaptable logical row accessed by multi-core as one physical row. In their
experimental results, the author showed that the adaptable memory system improves the scalability of multi-core by
up to 300% and could gain more from improving processor speed and global cache miss rate, and memory-processor
bus bandwidth. Thus, RRDRAM can reduce the impact of DRAM on the performance and scalability of parallel
computing when accessing big data with irregular access patterns.

YAN YAN, FREDERICK C HARRIS, JR. of University of Nevada, Reno, USA, authored the paper “A Survey
of Data Clustering for Cancer Subtyping.” The authors provided a comprehensive review of the major cluster analysis
algorithms from the clinical and computational domains to facilitate the development in cancer subtyping based on
microarray data. To complete this survey, the authors have referenced more than 200 articles and used various widely
used taxonomy such as hierarchical clustering, partitioning clustering, graph-based clustering, distribution-based
clustering, density-based clustering, grid-based clustering, clustering big data, clustering high dimensional data, and
other clustering techniques.

YONGWON PARK and SANJEEV BASKIYAR of Auburn University, Auburn, AL, USA, wrote their paper on
“Clustered particle swarm optimization using self-organizing maps.” In this paper, the authors talked about premature
convergence, which causes the PSO to stick in local optima. The authors used an approach called clustered PSO or
CPSO, which clusters particles periodically around sample vectors (particles) using self-organizing maps. Their results
of simulations showed that CPSO is highly effective in avoiding local minima for multimodal function optimization
problems as well as reducing the particle population with every iteration.

We would like to express our sincere appreciation to all the authors and the reviewers for their contributions to this
special issue. We hope you will enjoy the special issue and look forward to seeing you at future ISCA conferences.
More information about ISCA society can be found at http://www.isca-hq.org.

Guest Editors:
Gordon Lee, San Diego State University, CATA 2021 Program Co-Chair
Ajay Bandi, Northwest Missouri State University, CATA 2021 Program Co-Chair
Mohammad Hossain, University of Minnesota at Crookston, CATA 2021 Program Co-Chair

http://www.isca-hq.org/

76 IJCA, Vol. 28, No. 2, June 2021

Improvement of Apriori Algorithm for Missing Itemset
Identification and Faster Execution

Anjan Dutta*
Techno International NewTown, Kolkata, INDIA

Runa Ganguli*

The Bhawanipur Education Society College, Kolkata, INDIA

Punyasha Chatterjee†
Jadavpur University, Kolkata, INDIA

Narayan C. Debnath‡

Eastern InternationalUniversity,
Thu DauMot, VIETNAM

Soumya Sen§

University of Calcutta, Calcutta, INDIA

Abstract

Association rule mining (ARM) is an important data mining

strategy to analyze the relationship among the items. Apriori
algorithm is the most used approach to implement association
rule mining. We identified two major issues of Apriori.
Apriori follows an iterative approach consisting of multiple
database scans for searching frequent itemsets that satisfy
certain threshold criteria. The same predefined threshold
value is maintained throughout the repetitive stages of the
Apriori method and hence there is a huge possibility of
discarding higher-order itemsets, though all of its sub-itemsets
are frequent. Some of these ignored itemsets if used
intelligently have a huge potential for business value addition.
Furthermore, in the Apriori procedure, an exponential number
of computations is required to check whether an item is
important or not and that makes the entire pattern mining
system costly. In this study first, we identify the hidden
business-critical item sets that are otherwise ignored in the
traditional Apriori process. Furthermore, a novel approach is
proposed here to evaluate whether an item is interesting or not
at a considerably reduced computational time.

*Email: anjan.dutta.edu@gmail.com, runa.ganguli@gmail.com,
†School of Mobile Computing and Communication, Email:
punyasha.chatterjee@gmail.com.
‡School of Computing and Information Technology. Email:
narayan.debnath@eiu.edu.vn.
§A.K. Choudhury School of Information Technology. Email:
iamsoumyasen@gmail.com.

Key Words: Association rule mining, apriori algorithm,
data mining, missing itemset, execution time.

1 Introduction

Data mining is an integral part of any business in modern

day to improve the performance in terms of profit, sales,
forecasting etc. It is comprised of extracting the data,
analyzing the data and then generating a report or pattern to
ease out the business process. Data mining, also known as
Knowledge Discovery in Databases (KDD) [5], is the process
of discover-ing hidden and interesting patterns from a huge
amount of data for making essential business-oriented
decisions. Association rule mining [2, 6, 8] is a popular
technique in data mining to analyze the relationship among the
different items in a set of transactions. It is conceptualized as,
for every occurrence of A there exists certain numbers of
occurrence of B in any trans-action database. Knowledge of
the frequent sets is generally used to design association rules
stating how a set of items (itemset) influences the presence of
another itemset in the transaction database. The mining rules
are more applicable and useful in the market basket analysis.
Association rules are frequently used in business intelligence
[12] to help their marketing, advertisement, inventory control,
fault prediction, product recommendation etc. Due to its huge
business scope, association rule mining is a well-studied
research problem among the researchers. Among the several
association rule mining techniques Apriori algorithm [2] is the
most studied and widely used algorithm for Frequent Pattern
Mining (FPM) [6, 9, 13].

mailto:anjan.dutta.edu@gmail.com
mailto:runa.ganguli@gmail.com
mailto:punyasha.chatterjee@gmail.com
mailto:narayan.debnath@eiu.edu.vn
mailto:iamsoumyasen@gmail.com

IJCA, Vol. 28, No. 2, June 2021 77

Apriori algorithm is used to mine all frequent itemsets in a
transaction database. This algorithm begins with defining the
support of an item that is the frequency of the occurrence of
the items or itemsets in the transactional dataset. An itemset of
size k whose support is greater than some user-specified
minimum support threshold is said to be a frequent itemset and
denoted by Lk, otherwise the items are infrequent. Any
candidate itemset of size k, denoted by Ck is a potentially
frequent itemset. The algorithm begins by scanning the whole
database to find the set of frequent 1-itemsets by counting each
item in database. The resulting set is called L1 which is used to
determine the set of frequent 2-itemsets which in turn is used
to find the set of frequent 3-itemsets and so on until no more
frequent k-itemsets can be found. In this way, it uses an
iterative level-wise searching approach where k-itemsets are
used to generate (k+1) itemsets. If there are n items, we can
generate 2n numbers of possible combination as given in
Figure 1. To reduce the search space and improve the
efficiency of this level-wise frequent itemset generation, the
concept of pruning is used. This Apriori property states that if
an itemset is not frequent, any large subset from it is also non-
frequent [2]. This condition leads to pruning of some
candidate itemsets from the search space in the database. It is
shown in Figure 2.

Figure 1: Frequent itemset generation

Although Apriori is a widely used technique for association
rule mining several limitations could also be identified. In
Apriori, itemsets are discarded based on the given threshold
value and that value is also fixed for all the higher order
itemsets. This static assumption leads to the discard of some
of the interesting patterns by pruning. Another problem of
Apriori is high time complexity as every new level or high
order itemset (k+1) is generated from the k itemset.

In this paper, we address the above two limitations and
propose new methodologies to find out the interesting missing
patterns that are pruned by Apriori and also speedup the
computation for quick decision making.

The rest of the paper is organized as follows: Section 2
presents the related studies on the different improvised version
of Apriori Algorithm and its applications. Section 3 discusses

the motivation of the work. In Section 4, the methodology of
our work is described and the results are discussed in Section
5. The paper is concluded in Section 6.

Figure 2: Apriori Principle of reducing number of candidates

2 Related Work

Apriori algorithm is one of the most widely used technique

in data mining for frequent itemset calculation. However, it
has many drawbacks and these are critical to large dataset
mining. As a result, many researchers over the years have
pointed out these problems and proposed different versions of
improved Apriori algorithm. In [15], a Frequent Pattern (FP)
Growth ARM algorithm has been presented that removed the
disadvantages of traditional Apriori and proved to be efficient
in terms of number of database scan and time. It [15]
compresses a large database into a compact data structure
Frequent Pattern (FP) tree [10] which is based on FP-Growth
algorithm [10] and by recursively searching the tree, all
frequent patterns are found. The authors have shown that FP-
Growth algorithm outperforms the classical Apriori algorithm
in terms of running time, number of database scan, but
memory consumption is relatively high. Reducing thenumber
of dataset scans for enhancing efficiency of the algorithm have
been shown by many researchers [11, 16, 18]. Another
approach is seen in [3], where instead of scanning the whole
database for frequent itemsets, the authors have focussed on
selective scanning of only some specific transactions based on
minimum support count. It is seen by experiment that the total
number of scanned transaction for candidate itemset generation
is less when the same database uses standard Apriori and the
improved Apriori [3] reduces the time consumed by 67.38% in
comparison with the original Apriori. Singh et. al [17] have
also worked towards reducing the database scan time by
cutting down unnecessary transaction records and redundant
sub-items generation during the pruning stage. The method
eliminates the generation of candidates those having infrequent
subset i.e., the itemsets having support count less than the
specified threshold. The authors have proposed an optimized
method for Apriori algorithm which reduces the size of the
database by introducing an extra attribute Size_Of_Transaction

78 IJCA, Vol. 28, No. 2, June 2021

(SOT), containing the number of items in individual
transaction in database. The improved algorithm [17] not only
optimizes the algorithm for reducing the size of the candidate
set of k-itemsets, Ck, but also reduces the I/O spending by
cutting down transaction records in the database. However, it
has the overhead to manage the new database after every
generation of frequent set of k-itemsetsLk.

Minimizing the candidate generation is important for
increasing efficiency of Apriori algorithm. Factors such as set
size and set size frequency are being used [1] to eliminate non-
significant candidate itemsets. The author implemented both
the original and modified algorithms and average results
favoured the modified algorithm by 38% and 33% in terms of
execution time and database pass respectively. Apriori-
Improve algorithm [4] was mainly proposed to optimize 2-
itemset generation and transactions compression. The authors
have used hash structure for frequent 2-itemset (L2) generation
directly from one database scan without generation of C1, L1
and C2. The searching cost is also reduced by replacing hash
tree by hash table. The algorithm used an efficient horizontal
data representation and optimized strategy for saving time and
storage space. In another research work [19] two major
bottlenecks of FIM were addressed. These are: multitude of
candidate 2-itemsets(C2) and the poor efficiency of counting
their support. The proposed algorithm, Reduced Apriori
Algorithm with Tag (RAAT), reduces one redundant pruning
operation of C2. It is shown here how the use of transaction
tag helps to speed up support calculation. The paper concludes
that for relatively small support, RAAT algorithm runs faster
than the traditional one. One more enhanced version of
Apriori namely DCP (Direct Count of candidates & Prune
transactions) [14] was proposed that focused on optimizing the
initial iterations of Apriori when datasets are characterized by
mainly short or medium length frequent patterns. The main
enhancements include database pruning techniques, use of an
effective method for storing candidate itemsets and their
support counting. Application of improved Apriori algorithm
was presented in [7] over a mobile e-commerce
recommendation system. The approach converts the
transaction database into a corresponding binary matrix to
accelerate the algorithm efficiency, initially filtering out
unrelated data in the candidate sets and hence improving the
mining efficiency too.

3 Motivation and Objective

In the traditional Apriori method a significant number of

insignificant items or itemsets having ignorable support count,
are generated in the interim stages. Therefore, a pruning
strategy is taken to eliminate those item sets. The item sets are
eliminated based on two conditions-

If one of the sub-itemsets is infrequent then the itemset is

infrequent.
If the support count of the itemset is less than the threshold

then the itemset should be pruned.

Example 1: Let us consider a 3-itemset {p, q, r} database
whose support count is less than the threshold support count s
whereas the support count of all its 2-itemset subset {p, q}, {q,
r} and {p, r} is greater than or equal of s. As per the approach
of traditional Apriori although all the subset of a set is
considered as frequent itemset, the superset {p, q, r} may
become infrequent.

In the above approach, there may be itemsets having
frequent sub-itemsets though its support count is less than the
threshold value. If the sub-itemsets are valuable then keeping
these itemsets together may add value to the business e.g.
number of purchases of this larger set might increase resulting
in the overall business growth.

It is because Apriori algorithm considers static threshold
value for all k-itemset. In this example the itemset {p, q, r}
can be an interesting pattern that has the potential to add value
to the business. In this study, these kinds of valuable patterns
that are otherwise ignored in the Apriori method are identified.
In real life business applications this can be used as a case
where the company wants to sell multiple products together as
a package and they can choose the itemset like {p, q, r} which
will be become frequent over the time based on their business
strategy. Selling multiple products at a time is always a
subject of interest for any business organization and this
concept will help them in their business planning. We are
going to address the issues of missing itemset of Apriori
Algorithm that are potentially the subject of interest and have
huge business interest apart from making it faster.

Furthermore in traditional Apriori to check whether an k-
itemset is valuable or not all the iterative steps starting from
computing a single frequent item up to the k-itemset should be
completed and that results in the exponential number of
computations [2]. Henceforth decreasing the computations to
identify business-critical frequent patterns is another challenge.
We also address this issue here.

In this work we have two unique objectives – (i) to identify
the infrequent itemset, that has certain hidden business critical
patterns but is generally pruned by the traditional Apriori
method (ii) to reduce the computational complexity to identify
the frequent patterns.

4 Methodology

In this work two unique algorithms are proposed to – (i)

identify the hidden business critical patterns that are otherwise
pruned by the traditional Apriori method (ii) reduce the
computational complexity to identify the important patterns.
The detailed approach is explained in the next subsections.

4.1 Identifying the Hidden Business Critical Patterns

In this work, a novel strategy is proposed to identify these

business critical infrequent itemsets that would be otherwise
pruned if the traditional pruning strategy is followed. A
modified Apriori algorithm (Algorithm 1) to generate the
interesting patterns is proposed and explained here.

IJCA, Vol. 28, No. 2, June 2021 79

Algorithm 1: Algorithm Generate Interesting Patterns
Input: Transactional database, minimum threshold €
Output: All interesting items
Begin

1. Store all the frequent single items in 𝐿𝐿1
2. 𝑘𝑘 ← 2
3. While 𝐿𝐿𝑘𝑘−1 ≠ ∅

a. Compute all possible k pair combinations of items
in 𝐿𝐿𝑘𝑘−1 and store in set 𝐶𝐶𝑘𝑘

//Unlike traditional Apriori method, instead of
scanning the entire database, the minimum support
count of //immediate subsets is compared with the
threshold to determine the interesting patterns
b. For each item 𝑝𝑝 in 𝐶𝐶𝑘𝑘

i. Compute minimum support of all subsets of p
and store in 𝑠𝑠

ii. If 𝑠𝑠 ≥ €
𝐿𝐿𝑘𝑘 ← 𝑠𝑠

c. 𝑘𝑘 = 𝑘𝑘 + 1
4. return ⋃ 𝐿𝐿𝑘𝑘𝑘𝑘

End

The algorithm (Algorithm 1) begins with identifying all

frequent single items by comparing them with the given
threshold support count €. After eliminating all the infrequent
items the rest are stored in 𝐿𝐿1. After that k-item set is found by
combining all the k-1 items or itemsets with each other.
Thereafter minimum support count of all possible subsets of
each of the k-pair itemset is computed. This support count is
compared with the threshold support count € and if it is greater
than or equal to € then the corresponding itemset is included
otherwise it is pruned. Some future potential business-critical
items that are pruned in the traditional Apriori process are
preserved here as demonstrated by the Example 2.

In Table 1 and Table 2 the support count of 4-pair itemset
{A, B, C, D} and support counts of all its possible subsets are
shown. The threshold support count is assumed to be 2.

Example 2:

Table 1: Support count of 4-pair item set
Itemset Support Count

{A, B, C, D} 1

In Table 1 it is observed that {A, B, C, D} has a support

count 1 which is less than the threshold support count 2
whereas support counts of all the 3-pair item sub sets are
greater than the threshold value. In the traditional Apriori
pruning strategy {A, B, C, D} is pruned but in the proposed
conditional pruning method since all the subsets are frequent,
the superset is considered as an important itemset. The novelty

of this study lies here in discovering hidden patterns that will
add to the business insight and market forecast.

Table 2: Support counts of 3-pair item sets

4.2 Reduction of the Computational Complexity for
Frequent Pattern Identification

In the traditional Apriori method to identify whether an

itemset of size k is frequent or not involves a large number of
iterative stages. All possible combination of items (except the
pruned items) and their support counts are computed until the
given itemset is found and it involves nearly n*(k-1) database
scans where n is the total number of computed items or
itemsets (n≅2^(k-1)) [2]. Therefore these repetitive database
scans and large number of computations make the overall
Apriori method significantly costly. A unique top-down
approach is proposed here to significantly reduce the
computational complexity of interesting pattern identification.
First frequent single items are found and thereafter all possible
two pair itemsets along with their support counts are
computed. Here a no pruning strategy of 2-pair itemsets is
taken for faster operation. The results are internally stored for
later use. These two pair itemsets are periodically refreshed to
have the updated items. After computing and storing the
interesting one item and two item pairs the next task is to
check whether a larger itemset is frequent or important to the
business. The decision that whether a given pattern is
important for the business or not is taken by observing the
support counts of all possible two pair subsets of the larger set.
If the support counts of all of the two pair items are greater
than the threshold then the itemset is considered valuable. The
overall algorithm(Algorithm 2) is described below.

Algorithm 2: Algorithm Compute Frequent Single And

Two Pair Items
Input: Source transactional database D and minimum

support €.
Output: True if the given item set is frequent otherwise

false.
Begin

1. Declare is Important = true
2. Search for all single items whose support count is

more than the threshold count €
3. Compute all two pair items and store them in a list L.
4. For item set I in L

a. Compute the frequency of I in the source database
D

b. Store I and corresponding support count

End for

Item set Support Count
ABC 2
ACD 3
ABD 2
BCD 4

80 IJCA, Vol. 28, No. 2, June 2021

5. Store the items in the given pattern in a set S
6. Compute all possible two pair subsets of set S and

store them in Q
7. For each subset s in Q

a. Get the support count of s from the correspond-ing
stored database value and store in s

b. s ≥ €
continue

else
 is Important = false
 exit loop and go to step 5.

End for
8. print is Important

End

A sample source transactional dataset is shown in Table 3.

The frequent single itemsets generated by scanning the
transaction dataset considering a threshold of two is depicted
in Table 4. Again Table 5 depicts the set of all 2-itemsets.

Table 3: Transactional database

Transactions Items
T1 A, B
T2 B, C, D
T3 A, B
T4 A, C
T5 A, C, D
T6 B, C

Table 4: Frequent single itemsets
Item Support count

A 4
B 4
C 3
D 2

Table 5: Two itemsets
Item Sets Support Count

AB 2
AC 2
BC 2
AD 1
BD 1
CD 2

Now to check a 3-item set {A, B, D} is frequent or not all
possible two pair subsets and their support counts are obtained
from Table 5. Here the sub sets are {A,B}, {B,D} and {A,D}.
Among all these two pair itemsets BD is infrequent since its

support count is less than the threshold support count 2. Hence
ABD is considered as unimportant itemset. As an another
example if itemset {A, B, C} is considered, then all of its two
pair subsets are frequent and hence it is considered as an
interesting pattern.

5 Results and Discussion

In the traditional Apriori algorithm to check whether an n

itemset is important or not, the iterative steps of the Apriori
methods have to repeat to obtain all n pair frequent itemsets.
Thereafter the given item is searched among those itemsets to
know whether it is frequent or not. In this study, a novel
methodology is proposed where the traditional Apriori is
followed to obtain two itemsets. Thereafter the decision that
whether a given itemset is interesting or not is taken by
comparing the support counts of all the subsets with the
threshold support count. Since only two initial iterations of the
traditional Apriori method is performed here, hence this
method is computationally faster than the classic Apriori
method. The number of computations of Apriori algorithm is
exponential and nearly equal to 2𝑛𝑛 where 𝑛𝑛 is the number of
items. In the proposed methodology since only two pair items
are computed the number of computations is reduced to nC2
i.e. Table 6 gives a comparative study with respect to number
of computations in both the methods while Figure 3
graphically represents the study.

Table 6: Showing number of computations in both approaches
Number of items Number of

computations in
traditional

Apriori

Number of
computations in

the proposed
methodology

3 8 3
4 16 6
5 32 10
6 64 15
7 128 21
8 256 28
9 512 36

Apart from reduction in time complexity, mining the
interesting patterns that are otherwise unexplored in traditional
Apriori is another feature of this study. As an example in
Table 7 a sample retail dataset is shown.

Now the single and two pair frequent items are shown in
Table 8 and Table 9 considering threshold support count as 2.

From Table 9 frequent 3-itemsets are computed according to
traditional Apriori algorithm as shown in Table 10.

According to traditional Apriori only the set { Bread, Butter,
Jam } is considered as frequent or as important itemset as its
support count is greater than the minimum support count. All
other three itemsets (showed in the dashed rectangular area –
Table 10) are discarded.

IJCA, Vol. 28, No. 2, June 2021 81

Figure 3: Comparative study of number of computations between traditional Apriori and the proposed method

Table 7: Retail dataset

Transactions Item pattern
T1 Bread, Butter, Jam
T2 Bread, Jam
T3 Milk, Bread
T4 Milk, Bread, Butter
T5 Bread
T6 Butter, Milk
T7 Bread, Butter, Jam

Table 8: Frequent single itemsets

Table 9: Frequent 2-itemsets

Table 10: Frequent 3-itemsets

In this study after computing the frequent two itemsets the
repetitive steps of Apriori are not continued, instead a top
down approach is taken to mine the interesting patterns. As
mentioned in Section 3, a particular itemset is considered as
interesting if all the subsets are frequent. Here source database
is not scanned again to find the frequency of the pattern. The
item superset is considered as valuable if the minimum support
count of all the subsets is greater than the threshold support
count. The corresponding computations are shown in Table
11.

Table 11: Mining of interesting patterns in the proposed
approach

Itemset Subsets Min
subset
support
count

Selected /
Discarded

{Bread, Butter,
Jam}

{Bread, Butter},
{Bread, Jam},
{Butter, Jam}

2 Selected

{Bread, Milk,
Jam}

{Bread,Milk},
{Bread,Jam},
{Milk, Jam}

1 Discarded

{Butter, Milk,
Jam}

{Butter,Milk},
{Bread,Jam},{
Milk, Jam}

1 Discarded

{Milk,Bread,
Butter}

{Milk, Bread},
{Milk, Butter},
{Bread, Butter}

2 Selected

In the above analysis it is observed that in traditional Apriori

the combination {Milk, Bread, Butter} is ignored whereas in
the proposed methodology this is considered as a potential
interesting pattern. Hence for the retail market the
combination { Milk, Bread, Butter } can be tried to check

0

100

200

300

400

500

600

1 2 3 4 5 6 7

N
um

be
r

of
 c

om
pu

ta
ti

on
s

Number of items

Number of
computations in
traditional Apriori

Number of
computations in the
proposed
methodology

Items Support count
Bread 6
Butter 4
Milk 3
Jam 3

Item pair Support count
Bread, Butter 3
Bread, Jam 3
Milk, Bread 2
Milk, Butter 2
Butter, Jam 2
Milk, Jam 1

Item set Support count
Bread, Butter, Jam 2
Bread, Milk, Jam 0
Butter, Milk, Jam 0
Milk, Bread, Butter 1

82 IJCA, Vol. 28, No. 2, June 2021

whether it will add value to the business or not. To check if a
given itemset of any length is frequent or not, all possible two
pair subsets are computed and the minimum support count of
the subsets is compared with the threshold support to identify
whether it is valuable or not.

6 Conclusion

Apriori algorithm is widely used by different business

applications to identify the frequent itemset. But it misses
some interesting business patterns. Here we identify these
patterns to generate the itemset that can be useful for the
organization to sell multiple products as a package. This will
help the organization to increase the sales of the products
which are below the threshold level. As the users get the
chance to use these additional products at a little extra cost (the
package of products are sold at discounted price) they may like
it and may purchase that product individually also. Without
spending a huge amount for the advertisement, the sales of the
product will get a boost using our proposed approach. We also
address another major drawback of the Apriori algorithm that
is the higher number of computations. Our proposed
methodology based on 2 itemsets drastically reduces the
computational time. In Section 5 we have explained the
computational benefit of our proposed method over Apriori.
Henceforth the proposed approach will help the organization to
identify the missing business pattern and to develop the
business strategy based on these additional itemsets at a
fraction of time over Apriori. The proposed method can be
experimented over different big data tools for faster execution
time. Further improvement is possible by incorporating
parallelism in computation process may be introduced by using
the concept of Mapreduce in Hadoop framework or Sharding
in MongoDB.

References

[1] S. A. Abaya, “Association Rule Mining Based on Apriori

Algorithm in Minimizing Candidate Generation,”
International Journal of Scientific & Engineering
Research, 3(7):1-4, 2012.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, 1215:487-499, 1994.

[3] M. Al-Maolegi and B. Arkok, “An Improved Apriori
Algorithm for Association Rules,” arXiv preprint
arXiv:1403.3948, 2014.

[4] R. Chang and Z. Liu, “An Improved Apriori Algorithm,”
Proceedings of 2011 International Conference on
Electronics and Optoelectronics, IEEE, 1:V1-476, 2011.

[5] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “From
Data Mining to Knowledge Discovery in Databases,” AI
Magazine, 17(3):37-37, 1996.

[6] M. Giridhar, S. Sen, and A. Sarkar, “Share Market
Sectoral Indices Movement Forecast with Lagged

Correlation and Association Rule Mining,” IFIP
International Conference on Computer Information
Systems and Industrial Management, Springer, Cham,
pp. 327-340, 2017.

[7] Y. Guo, M. Wang and X. Li, “Application of an
Improved Apriori Algorithm in a Mobile E-Commerce
Recommendation System,” Industrial Management &
Data Systems, pp. 287-493, 2017.

[8] E. H. Han, G. Karypis and V. Kumar, “Scalable Parallel
Data Mining for Association Rules,” AcmSigmod Record,
26(2):277-288, 1997.

[9] J. Han, H. Cheng and D. Xin, “Frequent Pattern Mining:
Current Status and Future Directions,” Data Mining and
Knowledge Discovery, 15(1):55-86, 2007.

[10] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns
without Candidate Generation,” ACM Sigmod, 29(22)1-
12, 2000.

[11] J. L. Lin and M. H. Dunham, “Mining Association Rules:
Anti-Skew Algorithms,” Proceedings 14th International
Conference on Data Engineering, IEEE, pp. 486-493,
1998.

[12] G. Maji, S. Sen and A. Sarkar, “Business Intelligence
Development by Analysing Customer Sentiment,” 2018
7th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future
Directions) (ICRITO), IEEE, pp. 287-290, 2018.

[13] S. Paladhi, S. Chatterjee, T. Goto and S. Sen,
“AFARTICA: A Frequent Item-set Mining Method
Using Artificial Cell Division Algorithm,” IGI Global
Journal of Database Management, 30(3):71-93, 2019.

[14] R. Perego, S. Orlando and P. Palmerini, “Enhancing the
Apriori Algorithm for Frequent Set Counting,”
International Conference on Data Warehousing and
Knowledge Discovery, Springer, Berlin, Heidelberg, pp.
71-82, 2001.

[15] S. Rao and P.Gupta, “Implementing Improved Algorithm
over Apriori Data Mining Association Rule Algorithm
1,” Citeseer, pp. 489-493, 2012.

[16] A. Savasere, E. R. Omiecinski, and S. B. Navathe, An
Efficient Algorithm for Mining Association Rules in
Large Databases, Georgia Institute of Technology, 1995.

[17] J. Singh, H. Ram and D. J. S. Sodhi, “Improving
Efficiency of Apriori Algorithm using Transaction
Reduction,” International Journal of Scientific and
Research Publications, 3(1):1-4, 2013.

[18] H. Toivonen, “Sampling Large Databases for Association
Rules,” 96:134-145, 1996.

[19] W. Yu; X. Wang, F. Wang, E. Wang and B. Chen, “The
Research of Improved Apriori Algorithm for Mining
Association Rules,” 2007 International Conference on
Service Systems and Service Management, IEEE, pp. 1-4,
2007.

IJCA, Vol. 28, No. 2, June 2021 83

Anjan Dutta has completed his Bachelor
of Technology in Information
Technology from RCC Institute of
Information Technology, Kolkata, India
and Master of Technology in Information
Technology from Calcutta University,
Kolkata, India. Currently, he is an
Assistant Professor in the Department of

Information Technology at Techno International New Town,
Kolkata, India. His research area includes data mining, big
data and machine learning.

Runa Ganguli completed her Master of
Technology in Computer Engineering and
Applications from A.K. Chowdhury School
of IT, University of Calcutta, India in 2020,
Masters of Science in Computer and
Information Science from University of
Calcutta, in 2014. She did her Bachelors of
Science in Computer Science Honours from

Asutosh College, University of Calcutta in 2012. She is
currently working as an Assistant Professor in the Department
of Computer Science, The Bhawanipur Education Society
College, Kolkata, University of Calcutta, India since 2015.
She has several papers in reputed peer reviewed journals and
international conferences. Her main research interest includes
Graph Database, Data mining and Social Network Analysis.
She has 6 years of teaching experience.

Punyasha Chatterjee received the
B.Tech., M.Tech. and Ph.D. degrees in
Information Technology from the
University of Calcutta, Kolkata, India, in
2003, 2005 and 2018 respectively. She
is presently an Assistant Professor in the
School of Mobile Computing and
Communication, Jadavpur University,
Kolkata, India, since 2012. Her area of

interest includes adhoc networks, wireless sensor networks,
Internet of Things and pervasive computing. She is a senior
member of IEEE and member of ACM.

Narayan C. Debnath earned a
Doctor of Science (D.Sc.) degree
in Computer Science and also a
Doctor of Philosophy (Ph.D.)
degree in Physics. Dr. Narayan
Debnath is currently the
Founding Dean of the School of
Computing and Information
Technology at Eastern
International University,

Vietnam. He is also serving as the Head of the Department of
Software Engineering at Eastern International University,
Vietnam. Dr. Debnath has been the Director of the
International Society for Computers and their Applications
(ISCA) since 2014. Formerly, Dr. Debnath served as a Full
Professor and Chairman of Computer Science at Winona State
University, Minnesota, USA. Dr. Debnath has been an active
member of the ACM, IEEE Computer Society, Arab Computer
Society, and a senior member of the ISCA.

Soumya Sen has received a Ph.D. in
Computer Science & Engineering from the
University of Calcutta in 2016. He
received his M.Tech in Computer Science
& Engineering in 2007 and M.Sc. in
Computer and Information Science in 2005
also from University of Calcutta. He has
joined A. K. Choudhury School of
Information Technology under University

of Calcutta in 2009. Dr. Sen has around 90 research
publications in International Journals and conferences. He has
3 international patents and also published 2 books. Dr. Sen is
the TPC member of many conferences across the world and
serves as reviewer for many International journals. He is a
member of IEEE and ACM. Dr. Sen is a fellow of IETE
(Institution of Electronics and Telecommunication Engineers).
His current research area interests are Data Warehouse &
OLAP Tools, Data Mining, and Distributed Database.

84 IJCA, Vol. 28, No. 2, June 2021

An Adaptable Memory System Using Reconfigurable Row DRAM To Improve
Performance Of Multi Core For Big Data

Nagi Mekhiel*
Ryerson University, Toronto, ON, CANADA M5B 2K3

Abstract

Multi-core based systems access DRAM using multiple
different addresses that could map to different rows in the same
bank at the same time, causing row conflicts forcing them to
wait to activate one row at a time. We present an adaptable
memory using reconfigurable row DRAM that divides rows into
many segments and uses special latches to allow many accesses
that map to different physical rows to form one adaptable logical
row accessed by multi-core as one physical row. The adaptable
row accesses different rows in a pipeline fashion by overlapping
the long DRAM access time between the different accesses. The
results show that the adaptable memory system improves the
scalability of multi-core by up to 300% and could gain more
from improving processor speed and global cache miss rate and
memory-processor bus bandwidth.

Key Words: Reconfigurable architectures; memory systems;
DRAM; access patterns; pipelining; scalability of multi-core;
big data.

1 Introduction

The processor speed and computing power have continuously
increased due to advancements in technology. This increase in
processor power depends on delivering data and instructions
to the processor from memory at the processor speed.
Unfortunately, current memory systems cannot offer the
processor its data at the required rate [1,5,11]. Computer
performance depends on the memory system to provide multi
core with data at high rate. If the memory system fails to deliver
the required data rate, it will become the limiting factor to the
system performance [1,2].

The cache system has been used to solve this problem
by moving parts of data to a fast memory that can match
the processor speed. The cache system cannot fully isolate
fast processor from the slow main memory. The cache has
misses and the processor have to visit the main memory to
get data when information is not in cache (misses). These
misses represent the portion of processor time that limits the
overall system performance improvements. Furthermore, cache

*Department of Electrical, Computer and Biomedical Engineering. Email:
nmekhiel@ee.ryerson.ca

performance cannot be improved continuously by changing any
of its parameters (size, associativity, speed, ..) and reaches a
point of no return with respect to its parameters [2].

DRAM designs offer high bandwidth that depend on using
multibank and fast page access mode. In fast page mode,
accesses that exist in same DRAM row can be retrieved at a
much faster speed (fast page mode). The large data streams in
the applications can be mapped to the same row and benefit from
this mode. With multibank, more than one active row can supply
a processor with fast accesses from different parts of memory
[3,9]. However, a multi-core system has many different accesses
to different rows at the same time for the same bank.

The contribution of this paper is to reduce the impact
of DRAM on the performance and scalability of parallel
computing when accessing big data with irregular access
patterns. Irregular accesses map to different DRAM rows, cause
row conflicts and increase DRAM access time. Performance
gain of parallel computing is limited by the slowest portion
that cannot be improved. Our method applies parallelism to
the slowest DRAM accesses that is related to activating rows
by pipelining and overlapping these accesses when mapped to
different rows.

2 Backgound

DRAM has been through numerous changes to its design
from the basic DRAM architecture to the asynchronous to the
fast page mode (FPM) to the extended data-out (EDO) to the
burst-mode EDO to the synchronous(SDRAM) [4].

The changes have been relatively minor in terms of their
implementation cost and have increased DRAM throughput
significantly. Compared to the asynchronous DRAM, FPM
simply allows the row to remain open across multiple CAS
commands, requiring very little additional circuitry. To this,
EDO changes the output drivers to become output latches so
that they hold the data valid on the bus for a longer period.
To this, BEDO (EDO with Burst) adds an internal counter that
drives the address latch, so that the memory controller need not
supply a new address to the DRAM on every CAS command
if the desired address is simply one-off from the previous CAS
command. Thus, in BEDO, the DRAMs column-select circuitry
is driven from an internally generated signal, not an externally

ISCA Copyright© 2021

IJCA, Vol. 28, No. 2, June 2021 85

generated signal: the source of the control signal is close to the
circuitry that it controls in space and therefore time, and this
makes the timing of the circuits activation more precise. Lastly,
SDRAM takes this perspective one step further and drives all
internal circuitry (row select, column select, data read-out) by a
clock, as opposed to the RAS and CAS strobes [4].

3 Motivations

In general, DRAM architectures have limitations due to the
following problems :

• DRAM architectures allow one active row per bank, which
limits the ability of multiple accesses from current multi-
core chip to access the same bank if the accesses map into
different rows in the same bank.

• Only one row at a time can be activated, thus can have one
open row per bank at any time. Multiprocessor shares data
that map to the same area of memory, and likely in the same
bank with different rows, therefore current architectures
are not suitable for multi-core.

• Characteristics of software applications are not suitable
for DRAM architectures. Program data could map in
two different rows in one bank. Each time the program’s
accesses one row, the other row is forced to be closed
because it is in the same bank, when it finishes, it goes
back to the closed row and must open it, necessitating it
to close the current row that has just been activated. Each
time a row is closed, it precharges the bank, then latches
the accessed row which wastes time and limit the ability of
DRAM to provide fast accesses to processors.

• As performance of single processor is reaching a
diminishing return, processor makers are now moving
towards multi-core architecture with 8-core or 16-core in
a single chip. The performance of the computer is limited
by memory bandwidth [7,8].

What we need is a DRAM that is capable of providing a
single processor or multiprocessors with high bandwidth using
a new architecture that allows DRAM to have more than one
location active in the same bank and is not restricted to one
active row per bank in DRAM. Therefore, it must have many
partial rows active and map them to multiple of physical DRAM
rows in one bank, allowing multiple threads to access these
active partial rows as if there is a logical row that changes its
mapping to become adaptable to processors access patterns and
includes many physical rows in a bank. The active row must be
constructed based on the processor order of accesses and not by
the order of columns in a physical row (adaptable to processor
access patterns) [6].

4 The Concept of Reconfigurable Row DRAM
”RRDRAM”

DRAM physical row consisting of a number of columns that
are fixed and defined on DRAM array. Through this paper, we

assume a simple DRAM array of 1024 rows, each row has 1024
columns that could be accessed when the row becomes active.
If the processor requests an access that is not in the same active
row in the accessed bank, it must activate a new row and adds
all the time delays associated with opening a new row.

The processor access is usually for one location that maps to
a single column in the accessed row, then a burst mode is used to
transfer one cache block from the same active row. With multi-
core many different accesses are requested from the memory,
these accesses could map to different rows, forcing memory
controller to close some active rows and open new rows which
increases the access time.

The frequency of accessing DRAM in a multi-core system
is multiple times of the single processor. This causes DRAM
to open and close many rows very frequently increasing the
accesses time and power. The root of the problem is having
one fixed physical row activated per bank. A row consists of a
number of columns that are used for accesses, and may be only
one location of DRAM array that is 1024x1024, could be used
in the fast page mode. This is less than .0001% of the DRAM
array size. Having one physical row which either can be active
or not at a time is not suitable for accesses that come from the
multiprocessor and more likely map into many rows at a time.

We should have a memory that is not restricted to a fixed
physical row as the current DRAM architecture dictates. A
reconfigurable row is a logical row that is not restricted to the
DRAM physical row.

If we divide each physical row into segments or sections,
that each represents a smaller row of locations, that has for
example, only 64 columns each representing a partial row. The
size of row segment or section depends on the cache block size
and application requirements and implementation. Each row
segment or section could be active, therefore creating a logical
row that is adaptable for physical rows when changing [6].

Figure 1: DRAM organization

Figure 1, shows a conventional DRAM organization being

86 IJCA, Vol. 28, No. 2, June 2021

accessed by a processor to deliver data from four locations in
the DRAM array: A0, A1, A2, and A3. Assuming that A0 maps
to row Row896, A1 maps to Row82, A2 maps to Row234 and
A3 maps to Row567. This conventional DRAM system must
precharge and activate R896 (Row896) to supply data for A0,
then precharge and activate R82 and wait to supply data for
A1, followed by the same operations for A2 and A3. This
requires that total access time is four of random accesses =
4 *(precharge + ROW access + Column access + Transfer).
In the reconfigurable row system, it will only use one active
logical row and burst the four accesses from the latched data on
sense amps, therefore total time of four accesses is one random
access plus three fast page accesses= Precharge + Row access +
Column access + 4 *transfer.

Figure 2: Mapping accesses in adaptable row DRAM

Figure 2 shows the adaptable row system in accessing the four
addresses A0, A1, A2 , A3 for the above example. Although
these addresses map to different four rows R896, R82, R234
and R567, the logical row is formed to contain only four partial
rows. The other row segments are not included in the activated
logical row, therefore leaving 12 partial rows available and
precharged for the next group of accesses. It uses only a portion
of the total sense amps leaving the rest available for next access.
It should also be noted that in the reconfigurable row, because
a large portion of DRAM array will be ready and precharged,
latching new rows, and columns for the next accesses could be
completely overlapped and interleaved with data transfer to the
processor.

The latching of row segments allows the row address to
change and be decoded, while accessing present row segments.
This is a pipelining of accessing DRAM in which segments are
used and accessed in parallel by overlapping their delay time of
precharging, latching, decoding and access as explained below
in system operation.

5 The Reconfigurable ROW DRAM ”RRDRAM” System

5.1 The Basic System

The basic reconfigurable row for DRAM maintains the same
interface to the outside system. It uses the same DRAM core of
an array of columns and rows and the same storage elements of
single capacitor. The main difference is in using multiple row
segment latches, with each latch having a number of flip flops
equal to the number of rows in the DRAM array. For example, if
the DRAM array is 1024x1024, then these row segment latches
have 1024 flip-flops each. Each physical row in DRAM array
is divided into multiple segments, each segment is connected to
one output of the corresponding segment row latch [6].

Figure 3: Block diagram for reconfigurable row DRAM

Figure 3 shows a block diagram for a reconfigurable row for
DRAM. Multiple row segment latches. RLSn are used to latch
the decoded row of an accessed segment, each time there is a
request to access DRAM.

The outputs of these RLS latches control the word lines of
a specific row segment and each output is connected to 1 word
line of a segment. For 1024x1024 and 16 segments, there are
1024 outputs from each of RLS and each output is connected to
64 of word lines to activate the segment for 64 cells.

Figure 4 shows a more detailed schematic diagram to the
RRDRAM for each segment of the different rows being latched
by its corresponding segment row latch using k flip-flop, where
k is the number of rows in DRAM array and n is the number of
segments in each row, thus requiring nxk Flip-Flops in total per
the DRAM array. The flip-flops use RlClk to activate one flip-
flop that has its row = 1. ROW signals are activated by the row
decoder when a valid access is requested. The column decoder
shown is used to generate the proper RlClk for one segment at a
time. RlClk is generated to latch 1 at flip flop for the segment in
the intersection of accessed row and accessed column in DRAM
array.

IJCA, Vol. 28, No. 2, June 2021 87

Figure 4: Block diagram for row segments of reconfigurable
row DRAM

6 System Operation

6.1 Pipelined Operation

Our RRDRAM uses the same known DRAM technology,
therefore it requires the same timing to access data from one
location. In conventional DRAM the following are the basic
operations that must be performed for a DRAM operation (read
or write):- 1-Precharge operation wait for Tpr then 2-Latch a
valid row address wait for Trcd then 3-Latch a valid column wait
for Tcac then 4-access data In RRDRAM, the use of different
latches for row address, column address and latches for the
decoded rows in a segment (RL) and the latch for multiple
decoded columns (Column decoder Latch) allows the system
to overlap multiple accesses to different DRAM rows similar to
processor pipelining of instruction execution.

Figure 5: State diagram for pipelined operation in
reconfigurable row DRAM

Figure 5 shows a state diagram for the pipelined operation
of RRDRAM using the system of latches given above. The
following are the different states for multiple DRAM accesses
to different rows in RRDRAM:

• S0 (time t0): The row address of the first access is applied
to the DRAM multiplexed address and is latched by row
address latch at time t0. The row decoder immediately
starts to decode this row address.

• S1 (time t1): The memory controller applies the column
address of first access to DRAM multiplexed bus and is
latched by the column address latch at time t1. The column
decoder starts immediately decoding this column address.
The segment decoder decodes a portion of that address
corresponding to the segment selection and makes one
output active that corresponds to the accessed row segment.

• S2 (time t2) and S0 of second access: The system starts the
second access by applying the row address of the second
access similar to the first access in S0. It also continues
with the first access by latching the decoded row from the
row decoder in the corresponding RL latch by one of RlClk
generated from the segment decoder circuit. It also latches
the decoded column for the first access in the column
decoder latch and keeps previous accessed columns in the
active latch by the feedback.

• S3 (time t3) and S1 of second access: The first access
is waiting for Trcd and the accessed row is being active
and applied to the word line of the selected row segment
from the corresponding RL latch. The second access is
continuing in S1 similar to access 1 to latch its column
address. It is important to note that the first access column
has been captured and stored in the column decoder latch
in S2.

• S4 (time t4), S2 of second access and S0 of third access:
The first access asserts its active column to the bit line to
access the data. The second access latches the decoded row
in RL latch similar to first access in S2 and also latches the
decoded column. The third access starts in applying a row
address to the multiplexed bus similar to first access in S0.

• S5 (time t5) ,S3 of second access and S1 of third access:
The first access waits for Tcac to get data. The second
access waits for Trcd and accessed row is applied to word
line as in S3 for first access. Third access is in S1 to latch
column address and decode segment.

• S6 (time t6), S4 of second access and S2 of third access:
First access has its data ready and valid. The second access
asserts its active column to the bit line to access the data.
The third access is latching the decoded row from the row
decoder in the corresponding RL latch by one of RlClk
generated from the segment decoder circuit. Also it latches
the decoded column for the first access in the column
decoder latch and keeps previous accessed columns in the
active latch by the feedback.

At S6 data is ready for access 1, after two cycles data is ready
for access 2, after two cycles data is ready for access 3. When

88 IJCA, Vol. 28, No. 2, June 2021

access 1 delivers its data at S6, RRDRAM starts immediately
precharging the segment of access1. In this way the precharge
time is hidden and pipelined with other accesses. The second
and third accesses follow the same method making all accesses
pipelined in precharge, latching, decoding, access time and data
delivery.

6.2 Timing for System Operation

Figure 6: The timing of pipelined operation in RRDRAM

Figure 6 shows the timing of the RRDRAM operation given
above with the state diagram. The address bus supplies row and
column address for each access through the use of a multiplexer
in the memory controller as in any conventional DRAM. The
next access address is supplied to the address bus without the
waiting for data to be accessed from DRAM for the first access.
The memory controller keeps supplying the RRDRAM address
bus by new accesses every two clock cycles. The bus speed
could be increased compared to conventional DRAM because
of the use of latches in RRDRAM. Each address is latched
immediately and stored in the latch to be decoded.

The access to first address starts by latching the row in LR0
assuming that LR0 is used for access 0. LC0 is used to latch
column address for first access 0. The partial row is then
activated through applying the output of its RL latch to the
word line of the segment in LS0. The system waits, then uses
the output of column latch to activate bit line and access the
data after waiting for one cycle as shown in data bus as D0.
After each segment delivers its data it goes through precharge
individually without the need to precharge the whole bank as in
conventional DRAM.

Other accesses, access 1 and access 2 time is overlapped with
each other in a pipeline fashion to deliver data at a rate of 1
access every two cycles regardless of row number, therefore
more than one physical row could be accessed in parallel.

7 Performance Evaluation of RRDRAM

7.1 Conventional Single Processor Model

T s = T p×Ni+M×Ni× (Ta+T f) (1)

Ts is the execution time for single processor using conventional
DRAM
Tp= processor cycle time and could be less than 1 for
superscalar
Ni=number of instructions in an application
M=Cache Miss rate
Ta=main memory access time to activate DRAM Row and
access first location
Tf=time to transfer 1 block of cache using memory bus

7.2 Conventional Multiprocessor Model Using DRAM

T m = T p×Ni+N p×M×Ni× (Ta+T f) (2)

Tm is the time to execute multiple parallel processes on
multiprocessor system using conventional DRAM where Np is
number of processors. The total number of misses to external
shared main memory will be proportional to Np as they have to
be serviced in a serial fashion from one shared memory.

The processor execution time is overlapped among multiple
processors working in parallel, but accesses to shared memory
must be serialized.

Scalability = N p×T s÷T m (3)

The scalability is calculated by dividing the total time that
a single processor spends to execute same Np number of
processes in serial fashion by the time that multiprocessor takes
to execute same number of processes in parallel as given by
Equation (2).

7.3 Conventional Multiprocessor Model Using RRDRAM

T m(R) = T p×Ni+M×Ni× (Ta+N p×T f) (4)

Tm(R) is the time to execute multiple processes on a
multiprocessor system with RRDRAM where Np is the number
of processors.

Scalability = N p×T s÷T m(R) (5)

The total time to access the external main memory RRDRAM
will be the first access time Ta to DRAM then overlap the rest
of access times with Np transfer times to fill Np caches.

The scalability is calculated by dividing the total time that
a single processor spends to execute same Np number of
processes in serial fashion by the time that multiprocessor takes
to execute the same number of processes in parallel as given by
Equation (4).

IJCA, Vol. 28, No. 2, June 2021 89

7.4 Parameters of the System

Assuming a SPEC CPU2000 [10] benchmark application in a
processor running at 3.3 GHz.
IPC = 2 from using superscalar.
Tp = .15n average.
Ni= depends on the workload and changes from .774 to 14.6
billion instructions for SPEC CPU2000. We assume Ni = 1
billion.
M depends on the application and the cache. It can vary from
.0002 to .001, We assume M=.0006 for SPEC CPU2000 , 64 KB
L1 caches and is the same for all systems.
We assume Ta= 30 ns for a typical DRAM, this is the access
time to get first data element.
We can calculate the cache block transfer time as: similar to
Intel multi core that has about 10 GB/S (1.33 GHz and bus = 8
B) Tf = 128/10 = 12.8 ns.

7.5 Scalability of DRAM and RRDRAM Systems Results

Figure 7: Scalability of multiprocessor systems using DRAM
versus RRDRAM

Figure 7 shows the results of multiprocessor scalability when
using conventional DRAM and RRDRAM versus the number
of parallel processors.

The systems parameters are: processor speed is 3.3 GHz,
DRAM and RRDRAM access time Ta is 30 ns, Global Cache
miss rate is .0006 and memory bus bandwidth is 10 GB/s.
The effect of DRAM and RRDRAM is significant to the
performance and scalability of multiprocessors limiting its
scalability for a large number of processors. This shows that
the memory gap is still an issue that should be dealt with for
parallel computing. This confirms the Amdahl’s law that the
portion of time that cannot be improved remains the system
bottleneck to overall performance gain.

The multiprocessor using RRDRAM significantly improves

scalability of the system compared to the system using
conventional DRAM up to 300%.
Scalability of multiprocessor using DRAM reaches its
maximum at a low number of processors while the
multiprocessor using RRDRAM reaches its maximum
performance at a higher number of processors.

7.6 Scalability of DRAM versus RRDRAM Systems Using
different Processor Speed

Figure 8: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different processor speed

Figure 8 shows the scalability of both systems when changing
processor speed from 1 GHz to 4 GHz. The multiprocessor
system using conventional DRAM gains much less than the
system using RRDRAM for improving processor speed. The
system using DRAM only improves its scalability by 20% for
four times increase in processor speed. The system using
RRDRAM improves by 40% for same processor speed increase.
This indicates that RRDRAM gains more from increasing
processor speed and technology could use both improvements in
the number of transistors and improvements speed of transistors
to continue in improving the gain of multiprocessor scalability.

The results also show that RRDRAM system using a faster
processor gives the same scalability when using 20 faster
processors as the same system using 70 processors if using
slower processors. The DRAM based system with slower
processor speed needs to use 100 processors to get the same
scalability of 20 faster processors. This indicates that the system
using RRDRAM gains more from increasing processor speed
than the system using DRAM.

7.7 Scalability of DRAM versus RRDRAM Systems Using
different Miss Rate

Figure 9 shows the scalability of both systems when changing
global cache miss rate. The miss rate changes by eight times
from .0003 to .0024.

90 IJCA, Vol. 28, No. 2, June 2021

Figure 9: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different miss rate

The multiprocessor system using conventional DRAM
improves its scalability by 200% from 6 to 12 when miss rate
improves by eight times.

The multiprocessor system using RRDRAM improves its
scalability by 180% from 18 to 32 when miss rate improves by
eight times.

This indicates that both systems are more dependent on the
performance of their DRAM and RRDRAM memory and that
the memory gap between processor speed and memory speed is
still a bottleneck for the performance of computer systems.

The result shows that if global miss rate is high, the scalability
of both systems is drastically reduced, for the system with
DRAM its scalability decreases from 12 to 1 by 1200%, when
miss rate increases by eight times. The scalability of the system
using RRDRAM deceases from 32 to 5 by 600% and is less
dependent on miss rate.

7.8 Scalability of DRAM versus RRDRAM Systems Using
different Memory Bus Bandwidth

Figure 10 shows the scalability of both systems when using
different memory to processor bandwidth. Bus bandwidth
changes from 2.5 GB/S to 20 GB/S by eight times. This causes
transfer time Tf of a 8 B block to the cache from 6.4 ns to 51.2
ns.

The system using RRDRAM improves its scalability from 5
to 32 by about 600%. The system using DRAM improves its
scalability from 2 to 7 by 350%. This indicates that RRDRAM
system gains more from improving the memory bus bandwidth.

8 Conclusions

Multi-core based system performance depends on using
suitable memory system able to provide it with low latency and
high bandwidth. The conventional DRAM with one row per

Figure 10: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different transfer time

bank is not suitable to handle the requirements of a multi core
that access memory with different addresses simultaneously.
High bandwidth obtained by fast interface cannot help the
performance of a multi core system when using conventional
DRAM.

Our proposed RRDRAM is able to offer multi-core better
scalability for data with irregular access patterns that have
different addresses mapped to different physical rows and
accessed in a pipelined fashion as if it is in one physical
row. The scalability of the system using RRDRAM is multiple
fold that of the same system using DRAM. Using RRDRAM
also enables multiprocessor system for benefiting from faster
processors and higher bandwidth of memory bus. The speed
gap of processor memory becomes less severe when the system
uses RRDRAM.

References

[1] D. Burger, J. R. Goodman, and A. Kagi, Memory
Bandwidth of Future Microprocessors, Proc. 23rd Ann.
Int’l Symp. On Computer Architecture, ACM Press, New
York, 1996, pp. 78-89.

[2] J. Hennessy, and D.A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers,
Inc, San Francisco, CA, 2003.

[3] Kohji Hosokawa, Toshio Sunaga, and Shinpei Watanabe,
DRAM with Multiple Virtual Bank Architecture for
Random Row Access, US Patent No. 6,925,028 B2 Aug.
2, 2005

[4] Bruce L. Jacob, Synchronous DRAM Architectures,
Organizations, and Alternative Technologies 2002-
12-10, Electrical & Computer Engineering Dept.
University of Maryland College Park, MD 20742
http://www.ece.umd.edu/ blj/

IJCA, Vol. 28, No. 2, June 2021 91

[5] Sally A. McKee and Robert H. Klenke, Smarter Memory:
Improving Bandwidth for streamed References, IEEE
Computer , pp 54-63, July 1998.

[6] Nagi Mekhiel, Reconfigurable Row DRAM, US Patent
9,734,889 B2, Aug 15, 2017.

[7] Samuel Moore, Multicore Is Bad News For
Supercomputers, IEEE Spectrum, Nov 2008.

[8] R. Murphy, On the Effects of Memory Latency and
Bandwidth on Supercomputer Application Performance
Workload Characterization, 2007. IISWC 2007. IEEE 10th
International Symposium, pp.35-43, Sept 27-29, 2007.

[9] RAMBUS XDR DRAM, www.rambus.com, 2007 .
[10] SPEC CPU2000 Benchmark

https://www.spec.org/cpu2000
[11] Wm. A. Wulf, and Sally A. McKee, Hiting the Memory

Wall: Implication of the Obvious, ACM Computer
Architecture News Vol. 23, No. 1, pp. 2024, 1995..

Nagi Mekhiel is a Professor in the
Department of Electrical, Computer
and Biomedical Engineering,
Ryerson University, Toronto. His
research interests are computer
architecture, parallel processing, high

performance memory systems, advanced processors, VLSI, and
performance evaluation of computer systems. He holds many
U.S. and World patents in memory and multiprocessors. He is
conducting research to solve the fundamental problems facing
computer industry, including scalability of parallel processors,
and processor/memory speed gap.

92 IJCA, Vol. 28, No. 2, June 2021

A Survey of Data Clustering for Cancer Subtyping

Yan Yan*, Frederick C Harris, Jr.*
University of Nevada, Reno,

Reno, Nevada, USA. *

Abstract

Cancer subtyping remains a challenging task in microarray
data analysis. The major goals of a successful cancer subtyping
system are accuracy and reliability. Cluster analysis techniques
have proven to be effective in this area. To facilitate further
development in cancer subtyping based on microarray data, we
provide a comprehensive review of the major cluster analysis
algorithms from the clinical and computational domains that
have been applied on microarray mRNA expression data and
miRNA expression data for cancer subtyping, as well as
other clustering algorithms with potential application in cancer
subtyping.

Key Words: Algorithms, cancer subtype detection, data
clustering, microarrays

1 Introduction

Clustering is an interdisciplinary research topic and is
also known by researchers in different fields as unsupervised
learning, exploratory data analysis, grouping, clumping,
taxonomy, typology, and Q-analysis [138]. Cluster analysis is
defined as ‘a statistical classification technique for discovering
whether the individuals of a population fall into different groups
by making quantitative comparisons of multiple characteristics’
and its first known use was in 1948 (Merriam-Webster Online
Dictionary, 2013). The clustering algorithm was first developed
by biologists in numerical taxonomy study in 1963 before
being utilized by statisticians [134]. Clustering is used
for class discovery, i.e. exploration or discovery of the
underlying patterns of a dataset by separating the dataset
into groups, with little or no prior knowledge [86, 136, 254,
255]. Clustering is also used for natural classification, i.e.
identifying the degree of similarity among organisms, and
compression, i.e. organizing and summarizing data using cluster
prototypes [138]. Clustering has become increasingly popular
as society increasingly generates an overwhelming amount of
data, and it is often used as the first step in data analysis or as a
preparation step for experimental work [163, 256].

There is no universally agreed upon definition of
clusters [86]. A cluster is a set of objects that are compact
(or similar to each other) and isolated (or dissimilar) from
other clusters. In reality, cluster definition is subjective, and
its significance and interpretation requires related domain
knowledge [138]. Similarity measure is used by clustering

*Department of Computer Science and Engineering. Email:
fred.harris@cse.unr.edu

methods to calculate the similarity between two objects.
Different similarity measures will have different clustering
results, as some objects may be similar to one another using
one measure but dissimilar using another. Similarity between
two objects can be measured in different ways, and the three
dominant methods are distance measures, correlation measures,
and association measures [134]. Common similarity measures
include Euclidean distance, Manhattan distance, Maximum
norm, Mahalanobis distance, Pearson coefficient, Spearman’s
rank correlation coefficient, angle between two vectors, and the
Hamming distance.

Since the process of clustering is subjective, judging the
relative efficacy of clustering methods is difficult [20, 139].
Cluster validity is used to assess clustering results and can be
classified into three categories: a) Internal validities formulate
quality as a function of the given data set [130]. Examples
include Dunn’s Validity Index, Silhouette Value, Hubert Gamma
Statistic, Entropy, Xie-Beni, Normalized Mutual Information.
b) External validities assess quality by additional external
information such as category labels [130]. Examples include
Jaccard Index, Rand Index, Adjusted Rand Index, Variation
of Information, Kappa Statistic, CA. c) Relative validities
evaluate a clustering result by comparing it to results from other
clustering methods.

The procedure of cluster analysis includes four steps [254]:
Step one is feature selection or extraction. Feature selection
selects a subset of all features, and feature extraction
generates novel features from the original ones by using some
transformations [31, 135, 139, 254]. Step two is clustering
algorithm design or selection. Since clustering algorithms
group objects based on some proximity measure, this step
usually includes choosing an appropriate proximity measure
and construction of a clustering criterion function, creating an
optimization problem that has been well studied in the literature.
Step three is cluster validation. This step calculates a confidence
level for the clustering results. Step four is results interpretation.
This step provides meaningful insights from the data.

There is no single clustering algorithm that performs best
across all problems or data sets [152, 254]. Therefore, it is
important to study the characteristics of the problem and use
an appropriate clustering strategy [254].

Properties to be considered in choosing a clustering algorithm
include [28]: a) feature type (numeric and non-numeric), b)
scalability (large datasets), c) handling high dimensional data,
d) finding clusters of irregular shape, e) handling outliers, f)
time complexity of the algorithm, g) data order dependency,
h) assignment type (hard or strict vs. soft or fuzzy), i) prior

ISCA Copyright© 2021

IJCA, Vol. 28, No. 2, June 2021 93

knowledge and user defined parameters dependency, and j)
interpretability and visulization of results.

Despite many examples of successful applications of cluster
analysis, there still remain many challenges due to the existence
of many inherent uncertain factors [254]. The following
fundamental challenges in clustering [136, 138] are relevant
even today [138]: a) definition of a cluster, b) selection of
features, c) normalization of the data, d) outlier detection,
e) definition of pair-wise similarity, f) number of clusters,
g) selection of clustering method, h) existence of clustering
tendency, and i) validity of the clusters.

Some recent trends in clustering include [138]: semi-
supervised clustering utilizing external or side information;
interactive clustering, where a user can specify or change
program parameters based on domain knowledge or results
from previous clustering iterations; clustering ensembles, where
the partitions resulting from different algorithms (or the same
algorithm with different parameters) are combined; multi-
objective clustering, where the clustering algorithm optimizes
multiple specific objectives; large-scale clustering, which
handles very large databases; multi-way clustering, which
extends the bi-clustering framework and simultaneously clusters
heterogeneous components of the data objects [26]; and
heterogeneous data clustering for data comprising multiple
types, such as rank data, dynamic data, graph data, and
relational data [134].

Clustering techniques can be organized into categories.
Different criteria may result in different categories of
clustering algorithms [254]. Furthermore, categorization of
clustering algorithms is not straightforward or canonical,
and categories can overlap [28]. For convenience, in this
review we use the following taxonomy, which is also widely
used in the literature: hierarchical clustering (Section 2),
partitioning clustering (Section 3), graph-based clustering
(Section 4), distribution-based clustering (Section 5), density-
based clustering (Section 6), grid-based clustering (Section 7),
clustering big data (Section 8), clustering high dimensional data
(Section 9), and other clustering techniques (Section 10).

2 Hierarchical Clustering

Hierarchical clustering algorithms organize a data set into a
hierarchical structure according to a similarity measure [254]. It
is based on the belief that nearby objects are more related than
objects that are farther away [183]. These algorithms connect
objects based on their similarity to form clusters, which is
usually represented using a dendrogram. Hierarchical clustering
algorithms differ in the choice of similarity measures, the
linkage criterion (distance between clusters), and whether the
process is agglomerative (bottom-up) or divisive (top-down).
Agglomerative hierarchical clustering starts with singleton
clusters and then recursively merges appropriate clusters, and
divisive hierarchical clustering starts with one cluster containing
all objects and recursively splits appropriate clusters [28].

Divisive clustering is very expensive in computation [86]

and is not commonly used in practice [254]. We focus on the
agglomerative clustering first and then mention two divisive
clustering algorithms named MONA and DIANA [146, 254].

There are many agglomerative hierarchical clustering
algorithms based on different linkage criterion. The single
linkage method or nearest neighbor method [110, 136, 215,
220, 221, 254] uses the distance between two closest objects
in different clusters, and the shortest distance determines
the merge of two clusters. The complete linkage method
or farthest neighbor method [67, 149, 223, 254] uses the
distance between two farthest objects in different clusters,
and the shortest distance determines the merge of two
clusters. These two methods are the simplest and most
popular [254]. Average linkage methods include UPGMA
(Unweighted Pair-Group Method using Arithmetic averages),
WPGMA (Weighted Pair-Group Method using Arithmetic
averages), UPGMC (Unweighted Pair Group Method using
Centroids), and WPGMC (Weighted Pair Group Method using
Centroids). UPGMA and UPGMC use a simple average,
while WPGMA and WPGMC use a weighted average where
the weight is the inverse of cluster size. UPGMA [63, 87,
136, 220, 222] uses average distance between two objects in
different clusters, and the shortest average distance determines
the merge of two clusters. WPGMA or weighted average
linkage method [182] uses weighted average distance between
two objects in different clusters, and the shortest average
distance determines the merge of two clusters. UPGMC or
centroid linkage method [220] uses Euclidean distance between
unweighted centroids (calculated by arithmetic mean) of
different clusters, and the shortest distance determines the merge
of two clusters. WPGMC or median linkage method [220]
uses Euclidean distance between weighted centroids of different
clusters, and the shortest distance determines the merge of two
clusters. Minimum-variance method or Ward’s method [245]
considers the relationship of all objects in a cluster. Its objective
is to form clusters such that the increase of variance within each
group is minimized [247]. Further readings about these methods
include [86, 254, 259].

What follows are examples of divisive hierarchical clustering
algorithms. DIANA [146] (DIvisive ANAlysis Clustering)
selects in each dividing step the cluster with the largest diameter
and divides it into two new clusters. MONA [146] (MONothetic
Analysis Clustering of Binary Variables) divides clusters based
on a single well-chosen variable (or feature), whereas most other
hierarchical methods use all variables (or features).

Advantages of hierarchical clustering are a) Good
visualization with dendrogram representation [136, 231,
254, 256], b) Very informative descriptions with dendrogram
representation [136, 231, 254, 256], and c) Flexibility regarding
the number of clusters, since the clustering results can be
obtained by cutting the dendrogram at different levels.

Disadvantages of hierarchical clustering are [254, 256]: a)
Lacking of robustness and sensitivity to noise and outliers. b)
High computational complexity, which limit their application
on large scale data. c) Tendency to form clusters with

94 IJCA, Vol. 28, No. 2, June 2021

spherical shapes instead of natural shapes. d) Prone to reversal
phenomenon [189].

BIRCH [269] (Balanced Iterative Reducing and Clustering
using Hierarchies) clusters incoming data objects incrementally
and dynamically. It first builds a CF (Clustering Feature)
tree dynamically as new data objects are inserted and then
applies an agglomerative hierarchical clustering algorithm to
the nodes represented by their CF vectors. After obtaining a
centroid for each cluster, it assigns each data object to its nearest
centroid. CURE [112] (Clustering Using REpresentatives) uses
a number of representative data points in a cluster to evaluate
the distance between clusters. Closest cluster pair are merged
at each step of its hierarchical clustering process. ROCK [113]
(RObust Clustering using linKs) uses links and not distances
when merging clusters for boolean and categorical data.
DISMEA [224] uses the k-means algorithm to divide a cluster
into two clusters. The Edwards and Cavalli-Sforza Method [79]
divides all available clusters at each step. Minimum Spanning
Tree-based clustering algorithms [80, 190, 266] construct an
MST (Minimum Spanning Tree) [156, 185, 200] from a data
set and produce a group of clusters by removing selected edges.
Figure 1 shows an example of hierarchical clustering.

Figure 1: Hierarchical clustering [124]

3 Partitioning Clustering

Partitioning clustering algorithms divide objects into clusters
without hierarchical structure. Clusters are represented by
a central vector. Given the number of clusters, partitioning
clustering assigns the objects to the closest cluster center.
Partitioning algorithms can be grouped into k-means methods
and k-medoids methods. k-means methods use the centroid of
objects within a cluster as center. k-medoids methods use the
most appropriate object within a cluster as center.

K-means clustering [28, 93, 120, 121, 167, 226, 254, 256] is
very simple, but one of the best known and popular clustering
algorithms. There are many variations of the basic k-means
clustering. Classic k-means reassigns data objects based on
optimization of the objective function. If a reassigning has
a positive effect, the data object is reassigned and the cluster
centers are updated. ISODATA [19] (Iterative Self-Organizing
Data Analysis Technique) splits and merges intermediate
clusters based on a user-defined threshold and iterates until the
threshold is reached. FORGY [93] reassigns objects to nearest
centroids and recomputes centroids. It iterates until a stopping
criterion is achieved. Fuzzy c-means [29, 77] assigns fuzzy
cluster membership to each data object, and updates cluster
centers and membership after each iteration. Methods to speed
up k-means and fuzzy C-means such as brFCM (bit reduction
by Fuzzy C-Means) [83] replace similar data objects with their
centroid before clustering.

Variations of k-medoid [146] methods are as follows.
PAM (Partitioning Around Medoids) assigns each data object
to the closest medoid and iteratively reassigns objects and
updates medoids to optimize the objective function. CLARA
(Clustering LARge Applications) [146] applies PAM on
multiple subsets or samples of the data set, and selects the
best clustering as output. CLARANS (Clustering Large
Applications based upon RANdomized Search) [187] searches
a graph where each node is a set of medoids. It selects a node
randomly in search for a local minimum among its neighbor
nodes through iterations and outputs the best node to form
clustering results.

Advantages of partitioning clustering are a) simple,
straightforward and easy implementation, b) fast execution
with computation complexity of O

(
n
)
, c) very suitable for

compact and hyperspherical clusters, d) computational rigor
(firm foundation of analysis of variances).

Disadvantages of partitioning clustering are a) they are still
subjective processes that are sensitive to assumptions, b) they
require the number of clusters to be specified in advance, c)
they prefer clusters of approximately similar size, as they will
always assign an object to the nearest center, often leading to
incorrectly cut borders in between clusters, d) they are subject
to easy trapping in local minima and sensitivity to the initial
partition (hill-climbing optimization method).

Other developments are as follows. Bisecting k-means [225]
recursively partitions a cluster into two. KD-trees k-
means [195] uses the KD-Tree data structure to speed up the
assignment of data objects to their closest cluster by reducing
the number of nearest-neighbor queries in the traditional
algorithm. Scaling k-means [37] retains important data objects
and summarizes or discards other objects. Centroids of the
resulting data set are then used on the whole data set. X-
means [196] finds the number of clusters K automatically
by optimizing a criterion function such as AIC (Akaike
Information Criterion) or BIC (Bayesian Information Criterion).
Kernel k-means [209] enhances k-means by using a kernel
function that nonlinearly maps the original feature space to

IJCA, Vol. 28, No. 2, June 2021 95

a higher dimensional one, where clusters are more separable.
Weighted kernel k-means [71] further extends kernel k-means
by assigning a weight for each cluster. The weight is defined
as the reciprocal of the number of data objects in the cluster.
GA k-means [16] applies a genetic algorithm to improve cluster
centers initialization for k-means. Simulated annealing [7,
132, 151, 211] uses simulated annealing optimization to avoid
local optima and find the global minimum solution. Soft
assignment [267] assigns data objects to different clusters
with appropriate weights to improve the optimization process.
It uses Harmonic Averages of the distances from the data
object to all the centers. Mahalanobis distance [170] is used
to detect clusters with hyperellipsoidal shapes. Maximum
of intra-cluster variances [109] can be used as the objective
function instead of the sum to obtain good clustering
results. K-prototypes [131] incorporates categorical data as
a generalization approach. Accelerated k-means by triangle
inequality [81] avoids unnecessary distance calculations by
using the triangle inequality and keeping track of lower and
upper bounds for distances between data objects and cluster
centers. K-means++ [12] improves the speed and the accuracy
of k-means by using a simple randomized seeding technique.
Figure 2 shows an example of partitioning clustering.

Figure 2: Partitioning clustering [57]

4 Graph-based Clustering

Graph-based clustering algorithms construct a
graph/hypergraph from the data and then partition the
graph/hypergraph into subgraphs/subhypergraphs or clusters.
Each vertex represents a data object, and the edge weight
represents the similarity of two vertices [50]. The edges in the
same subgraph/subhypergraph should have high weights, and
the edges between different subgraphs/subhypergraph should

have low weights [50]. It is also called spectral clustering [138].
Representative algorithms are as follows. Chameleon [143]

uses a connectivity graph and graph partitioning to build small
clusters, followed by the agglomerative hierarchical clustering
process. Its key feature is that it considers both interconnectivity
and closeness when merging clusters. CACTUS (Clustering
Categorical Data Using Summaries) [100] detects candidate
clusters based on the summary of the data set and determines the
actual clusters through a validation process against the candidate
clusters. It uses a similarity graph to represent the inter-attribute
and intra-attribute summaries [98]. A Dynamic System-
based Approach or STIRR (Sieving Through Iterated Relational
Reinforcement) [106] represents each attribute value as a
weighted vertex in a graph. It iteratively assigns and propagates
weights until a fixed point is reached. Different weight groups
correspond to different clusters on the attribute. ROCK (Robust
Clustering algorithm for Categorical Data) [113] repeatedly
merges two clusters until the specified number of clusters is
reached, and it uses data sampling to improve complexity. It
uses a connectivity graph to calculate the similarities between
data objects [98].

The advantages of graph-based clustering are [50]: a) A
graph is an elegant data structure that can model many real
applications. b) It is based on solid mathematical foundations,
including spectral theory and Markov stochastic process. c)
It produces optimal clustering (optimizing a quality measure
instead of acting greedily toward the final clustering).

The major disadvantage of graph-based clustering is that it
may be slow when working on large scale graphs [50].

Other developments are as follows. The Ratio Cut
algorithm [117] adopts a cluster size constraint, which is the
number of data points in a cluster. The Normalized Cut
(NCut) algorithm [214] is an approximate graph-cut based
clustering algorithm with a cluster size constraint, which is
the volume of the cluster or sum of edge weights within
a cluster. It also has a multiclass version [264]. The
MNCut (Modified Normalized Cut) algorithm [174] gives a
new interpretation to the NCut algorithm in the framework
of a Markov Random Walk. Ng’s method [186] derives
a new data representation from normalized eigenvectors of
a kernel matrix simultaneously and in a particular manner.
Laplacian Eigenmap [27] uses the eigenvectors of the graph
Laplacian to represent data. Pairwise Data Clustering
by Deterministic Annealing [126] uses proximity measures
between the data objects to represent data. Dominant
Sets Pairwise Clustering [191] relates clusters to maximal
dominant sets [180] in pair-wise clustering. Fast approximate
spectral clustering [260] applies a distortion-minimizing local
transformation to the data to speed up conventional spectral
clustering. Active spectral clustering [243] follows the concept
of constrained clustering and uses pairwise relations. Its
constraints are specified in a incremental manner. Locally-
scaled spectral clustering using empty region graphs [60]
employs β -skeleton (a subset of empty region graphs) and non-
linear diffusion to define a locally adapted affinity matrix which

96 IJCA, Vol. 28, No. 2, June 2021

Figure 3: Graph-based clustering [85]

defines the similarity of two data objects. Figure 3 shows an
example of graph-based clustering.

5 Distribution-based Clustering

Distribution-based clustering views or assumes that the data
are generated by a mixture of probability distributions, each
of which represents a different cluster [99, 172]. This way, a
cluster can be seen as objects generated by the same distribution.
Thus, a particular clustering method can be expected to produce
good results when the data conform to the method’s distribution
model [99]. It is also called model-based clustering. There are
usually two approaches to form the model: the classification
likelihood approach and the mixture likelihood approach [99].

Distribution-based clustering has a long history. Early works
include [30, 65, 210, 249]. A survey of cluster analysis in a
probabilistic and inferential framework is presented in [33].

Representative algorithms are as follows. The EM
(Expectation-Maximization) clustering algorithm [69] is the
most popular method in distribution-based clustering. It tries
to fit the data set into the assumed number of Gaussian
distributions by moving the means of Gaussian distributions
toward the cluster centers. COOLCAT (reducing the entropy,
or COOLing of the CATegorical data clusters)[22] uses
entropy to cluster categorical data. It consists of data
sampling and incremental assignment. STUCCO (Search and
Testing for Understandable Consistent Contrasts) [25] uses
tree searching and significant contrast-sets to find clusters.
GMDD (Gaussian Mixture Density Decomposition) [271] uses
a recursive approach and identifies each Gaussian component in
the mixture successively. Autoclass [49] is based on the classic
distribution-based approach and uses a Bayesian method to
determine the optimal clusters. P-AutoClass [198] is a parallel
version of Autoclass and can be used on large data sets.

The advantages of distribution-based clustering are as
follows [28]: a) It can be modified to handle complex data,
b) It has a solid theoretical foundation, c) Its results are easily
interpretable, d) It not only provides clusters, but also produce
complex models that capture relationships among attributes, e)
Results are independent of the timing of consecutive batches

of data, f) It is good for online learning since the intermediate
mixture model can be used to cluster objects, g) the Mixture
model can be naturally generalized to cluster heterogeneous
data.

The disadvantage of distribution-based clustering is the
difficulty in choosing the appropriate model complexity (since a
more complex model will usually be able to explain the data
better but may cause an overfitting problem from excessive
parameter set).

Other developments are as follows. Latent Dirichlet
Allocation (LDA) [32] uses a hierarchical Bayesian model that
has three levels. Each data object is modeled as a finite mixture
over an underlying set of groups (or clusters) of objects. Each
group (or cluster) is modeled as an infinite mixture over a
set of group (or cluster) probabilities. Pachinko Allocation
Model (PAM) [161] uses a Directed Acyclic Graph (DAG) to
model cluster correlations. The leaves of the DAG represent
data objects, and the interior nodes represent correlations.
Undirected graphical model for data clustering [246] is based on
exponential family distributions and the semantics of undirected
graphical models. It uses the technique of minimizing
contrastive divergence to speed up the process. Robust cluster
analysis via mixture models method [173] uses the mixtures
of multivariate t distributions approach to the clustering. It
also uses the t distribution to cluster high-dimensional data
via mixtures of factor analyzers. Online learning for LDA
method [125] is an online Variational Bayes (VB) algorithm
for LDA. It uses natural gradient step in online stochastic
optimization, which converges to a local optimum of the VB
objective function. Figure 4 shows an example of distribution-
based clustering.

Figure 4: Distribution-based clustering [56]

IJCA, Vol. 28, No. 2, June 2021 97

6 Density-based Clustering

Density-based clustering defines clusters as dense regions
of data objects separated by low-density regions. A cluster
is a connected dense component and grows in any direction
that density leads [99]. Objects in low-density areas which
separate clusters are usually considered to be noise and border
points. There are two major approaches for density-based
clustering [28]: the connectivity approach pins density to a
training data point; the density function approach pins density
to a point in the attribute space.

Representative algorithms for the connectivity approach are
as follows. DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [84] starts by selecting a data object
and tries to find all data objects density-reachable from it to form
a cluster. If none are found, the algorithm selects a new data
point and repeats. GDBSCAN (Generalized DBSCAN) [205]
generalizes the concept of neighborhood by permitting the use
of any distance function besides Euclidian distance and allows
other measures besides simply counting the objects to define
the cardinality of that neighborhood. OPTICS (Ordering Points
To Identify the Clustering Structure) [11] is like an extended
DBSCAN algorithm. It does not assign cluster memberships
but stores the order in which the data objects are processed as
well as the core-distance and a reachability-distance for each
data object. An extended DBSCAN is used to assign cluster
memberships. DBCLASD (Distribution Based Clustering of
LArge Spatial Databases) [257] uses the notion of clusters
based on the distance distribution and incrementally augments
an initial cluster by its neighboring points as long as the
nearest neighbor distance set of the resulting cluster still fits the
expected distance distribution.

Representative algorithms for the density function
approach are as follows. DENCLUE (DENsity-based
CLUstEring) [122] calculates the impact of each data object
within its neighborhood (i.e. influence function) and determines
clusters mathematically by identifying local maxima of the
overall density function (i.e. density-attractors).

The advantages of density-based clustering are as follows [28,
99]: a) They can find clusters of arbitrary shapes, in contrast
to many other methods. b) Time complexity is low (linear or
O
(
n
)
). c) It is deterministic for core and noise points (but not

for border points), therefore there is no need to run it multiple
times. d) It can handle noise well. e) The number of clusters is
not required, since it finds clusters and the number of clusters
automatically. f) Results are independent of data ordering. g)
There are no limitations on the dimension or attribute types.

The disadvantages of density-based clustering are as follows:
a) It is often difficult to detect cluster boarders when the cluster
density decreases continuously (i.e. arbitrary borders). b) For
a mixtures of Gaussians data set, distribution-based clustering
(e.g. EM) usually outperforms density-based clustering. c)
Limitations in processing high-dimensional data, since it is
difficult to distinguish high-density regions from low-density
regions when the data is high-dimensional [138]. d) Most

density-based clustering algorithms were developed for spatial
data [99].

Other developments are as follows. BRIDGE [64] integrates
the k-means algorithm and the DBSCAN algorithm. K-
means is first performed, and then DBSCAN is used on each
partition. Finally, results are improved by removing the noise
found by DBSCAN. Jarvis-Patrick algorithm [94] partitions
the data set into clusters based on the number of shared
nearest neighbors. It first identifies the k nearest neighbors
of each data object and then merges two data objects at a
time. C-DBSCAN (Constrained-DBSCAN) [204] enhances
the DBSCAN algorithm with pairwise constraints. SCAN
(Structural Clustering Algorithm for Networks) [258] can detect
hubs and outliers, in addition to clusters in networks (or
graphs). It uses a structural similarity measure to cluster
vertices. Figure 5 shows an example of density-based clustering.

Figure 5: Density-based clustering [55]

7 Grid-based Clustering

Grid-based clustering operates on space partitioning instead
of data partitioning to produce clusters [28]. It first creates the
grid structure by partitioning the data space into cells (or cubes)
and then clusters the cells based on their densities.

Representative algorithms are as follows. BANG-
clustering [28, 207] uses a multi-dimensional grid data structure
to organize or partition the data. It uses the cell information
in the grid and clusters the cells. STING (A STatistical
INformation Grid approach) [241] uses a hierarchical structure
of grid cells with a top-down approach. It labels a cell to
be relevant or not at a specified confidence level. Then, it
finds all the regions formed by relevant cells. STING+ [28,

98 IJCA, Vol. 28, No. 2, June 2021

242] uses a similar hierarchical cell structure as STING and
introduces an active spatial data mining approach. OptiGrid
(Optimal Grid) [123] constructs an optimal grid partitioning of
the data by finding the best partitioning hyperplanes for each
dimension with projections of the data. GRIDCLUS (GRID-
CLUStering) [206] organizes the space surrounding the clusters
with a grid data structure. It uses a topological neighbor
search to cluster the grid cells. GDILC (Grid-based Density-
IsoLine Clustering) [261] is based on the idea that the density-
isoline figure reflects the distribution of data. It uses a grid-
based approach to calculate the density and finds dense regions.
WaveCluster (Wavelet-based clustering) [212] transforms the
original feature space by applying wavelet transform and then
finds the dense regions in the new space. It yields sets of clusters
at different resolutions and scales, which can be chosen based
on the user’s needs. FC (Fractal Clustering) [21] adds one data
object at a time to one cluster in such a way that the fractal
dimension changes the least after adding the data object.

The advantages of grid-based clustering are as follows [28,
99]: a) It is fast and works well with large data sets (since speed
is independent of the number of objects in the data), b) It handles
noise well, c) It is independent of data ordering, d) It can handle
attributes of different types, e) It can be used as an intermediate
step in many other algorithms such as CLIQUE and MAFIA.

The disadvantages of grid-based clustering are as follows: a)
Most algorithms need the user to specify grid size or density
thresholds, which can be difficult (fine grid sizes result in high
computational time, while coarse grid sizes result in low quality
of clusters) [99]. b) Some grid-based clustering algorithms
(e.g. STING, WaveCluster) are not good at high dimensional
data [99].

Other developments are as follows. AMR (Adaptive
Mesh Refinement clustering) [162] creates grids at multiple
resolutions where higher resolution grids are applied to the
localized denser regions. O-Cluster (Orthogonal partitioning
CLUSTERing) [175] is a variant of OptiGrid. It creates
a hierarchical grid-based structure by making axis-parallel
(orthogonal) partitions on the input data. It operates recursively,
and the final irregular grid frames the data into clusters. CBF
(Cell-Based Filtering) [47] splits each dimension into a set of
partitions using a filtering-based index. It then creates cells
based on the overlapping regions of the partitions. PGMCLU
(Parallel Grid-based CLUstering algorithm for Multi-density
datasets) [251] consists of parallel data partitioning, local
clustering, and merging local clusters. It introduces a new
measure called grid compactness for the degree of tightness
between data objects within the grid, and the notion of grid
feature for summarizing the information about a grid. Figure 6
shows an example of grid-based clustering.

8 Clustering Big Data

Big data clustering refers to clustering on millions of data
objects [138]. These algorithms need to have good scalability
and process big data within reasonable computing time and

Figure 6: Grid-based clustering [263]

memory space [28]. A high computational complexity would
dramatically limit an algorithm’s application to big data. The
strategies used for big data clustering can be categorized
into sampling, data summarization, distributed computing, and
incremental learning.

8.1 Sampling

Sampling methods select a sample of the original large data
set and perform clustering over the sample data. Old-fashioned
sampling methods may or may not use rigorous statistical
reasoning. Newer sampling methods use special uniform checks
to control their adequacy [28]. Advantages are that it is simple
to implement and can screen out most outliers. However, small
clusters may be missed.

Examples are as follows. CURE (Clustering using
REpresentatives) [112] and ROCK (RObust Clustering using
linKs) [113] were covered in Section 2. CLARA (Clustering
LARge Applications) [145] draws several samples from the
data set, runs PAM on each of them, and selects the best
result. CLARANS (Clustering Large Applications based on
RANdomized Search) [187] starts with a new randomly-
selected node (a set of k potential medoids) in the graph in
search of the local optimum. It repeats if a local optimum is
found.

8.2 Data Summarization

Data summarization methods calculate data summary
statistics and perform clustering on the summaries instead of
the original data. The advantage is that the requirement for the
storage of and frequent operations on the large amount of data
are greatly reduced, saving both computational time and storage

IJCA, Vol. 28, No. 2, June 2021 99

space. The disadvantage is reduced cluster quality.
Examples are as follows. BIRCH (Balanced Iterative

Reducing and Clustering using Hierarchies) was covered in
Section 2. BUBBLE [101] instantiates generalized BIRCH
for data in a distance space. BUBBLE-FM (BUBBLE-
FastMap) [101] improves upon BUBBLE by reducing the
computation time using FastMap [88]. EMADS (EM Algorithm
for Data Summaries) [141] directly generates a Gaussian
mixture model from simplified data summaries. bEMADS
(BIRCH’s EMADS) [141] uses data summarization procedures
in the BIRCH algorithm.

8.3 Distributed Computing

Distributed computing methods divide a large data set into
smaller data sets and perform clustering on each smaller data
set. The advantage is that clusterings on each smaller data
set can be done in parallel to reduce the overall computation
time [138]. The disadvantage is the overhead and complexities
due to the dividing and combining steps.

Examples are as follows. Parallel k-means [70] is a
parallel implementation of the k-means clustering algorithm.
DBDC (Density Based Distributed Clustering) [140] clusters
distributed data locally and extracts suitable representatives
from these local clusters to send to a global site where the
complete clusters are restored based on the local representatives.
It uses a density-based clustering algorithm for both local and
global clustering. Parallel spectral clustering in distributed
systems [51] makes the dense similarity matrix sparse by
retaining nearest neighbors using a parallel approach.

8.4 Incremental Learning

Incremental learning methods process one data object at a
time and may discard it. They require only one single pass
over all data objects, in contrast to most clustering methods
that require multiple passes over data objects before identifying
the cluster centers [138]. Advantages are: improved clustering
efficiency in terms of data storage and processing time (they can
admit new data objects without learning from scratch [256]);
handling outliers well [28]; resumable processing which makes
it very suitable for dynamic big data sets [28]. Disadvantages
are that results depend on data order and may not be stable [43,
178, 256], and can result in lower quality clusters [28].

Examples are as follows. DIGNET [232, 244] moves cluster
centers toward a new data point with each new addition.
Hartigan’s leader algorithm [120] uses a distance/similarity
threshold to decide if a data point should be added to the
cluster or used for a new cluster center. ART (Adaptive
Resonance Theory) family [42, 256] simulates neural circuits
that are believed to trigger fast learning. It includes a
large family of neural network variants such as ART1 [43],
ART2 [42], Gaussian ART [248], Bayesian ART [236],
Ellipsoid ART [9], ART tree [45, 250], ARTMAP [44], Q-
learning ART [38], Fuzzy ART [41]. Charikar’s incremental
clustering [48] maintains a clustering of the data objects so

that the maximum cluster diameter is minimized as new data
objects are added. GenIC (Generalized Incremental algorithm
for Clustering) [114] divides the data stream into chunks or
windows, updating each cluster center with each new data
object addition and merging clusters at the end of a window of
data. Cobweb [91] is an incremental system for hierarchical
clustering, which enables bi-directional hill-climbing search
through the space of hierarchical schemes.

9 Clustering High Dimensional Data

High Dimensional Data clustering refers to clustering on
data objects that represent from a few dozen to thousands or
more features. Such high dimensional data are often seen in
areas such as medicine (e.g. microarray experiments), and
text documents (e.g. word-frequency vector methods [46]).
Clustering high dimensional data is tremendously difficult.
One problem is that increased irrelevant features eliminate the
likelihood of clustering tendency [28]. Another problem is the
‘curse of dimensionality’, or lack of data separation, in high
dimensional space (the problem becomes severe for dimensions
greater than 15) [28]. Performing feature selection before
applying clustering can improve the first problem. Principal
Component Analysis (PCA) [193] is commonly used. However,
the dimension may still be high after feature selection. In
this review, we discuss techniques that have been developed
to address such situations: projected clustering, subspace
clustering, bi-clustering (or co-clustering), tri-clustering, hybrid
approaches, and correlation clustering.

9.1 Projected Clustering

Projection techniques map data objects from a high
dimensional space to a low dimensional space, while
maintaining some of the original data’s characteristics [13].

Examples are as follows. PreDeCon [34] finds subsets
of feature vectors that have low variance along subsets
of attributes. PROCLUS [3] finds the candidate clusters
and dimensions by using medoids. For each medoid, the
subspace is determined based on attributes with low variance.
Random projections for k-means clustering [36] implements
a dimensionality reduction technique for k-means clustering
based on random projections.

9.2 Subspace Clustering

Subspace clustering algorithms identify clusters in
appropriate subspaces of the original data space.

Examples are as follows. CLIQUE (CLustering In QUEst) [5]
partitions the data space into units and then finds the
maximum sets of connected dense units. SUBCLU (density-
connected Subspace Clustering) [155] adopts the notion
of density-connectivity introduced in DBSCAN (Section 6)
and uses the monotonicity of density-connectivity to prune
subspaces. CACTUS (Clustering Categorical Data Using

100 IJCA, Vol. 28, No. 2, June 2021

Summaries) is covered in Section 4. ENCLUS (ENtropy-
based CLUStering) [53] finds clusters in subspaces based on
entropy values of subspaces. Subspaces with lower entropy
values typically have clusters. It then applies CLIQUE or other
clustering algorithms to such subspaces. MAFIA (Merging of
Adaptive Finite Intervals) [108] uses adaptive grids in each
dimension and then merges them to find clusters in higher
dimensions. OptiGrid (Optimal Grid) is covered in Section 7.
MrCC (Multi-resolution Correlation Cluster detection) [58]
constructs a novel data structure based on multi-resolution and
detects correlation clusters by identifying initial clusters as
axis-parallel hyper-rectangles with high data densities, followed
by merging overlapping initial clusters. Figure 7 shows an
example of subspace clustering.

Figure 7: Subspace clustering [216]

9.3 Hybrid Approaches

Hybrid approaches find overlapping clusters. Some of
them find only potentially interesting subspaces and use full-
dimensional clustering algorithms to obtain the final clusters.

Examples are as follows. DOC (Density-based Optimal
projective Clustering) [201] uses a global density threshold
to compute an approximation of an optimal projective cluster.
FIRES (FIlter REfinement Subspace clustering) [154] first
computes one-dimensional clusters and then merges them by
applying ‘clustering of clusters’ based on the number of
intersecting points between clusters. P3C (Projected Clustering
via Cluster Cores) [176, 177] first computes intervals matching
or approximating higher-dimensional subspace clusters on
every dimension and then aggregates those intervals into cluster
cores. The cluster cores are refined and used to assign data
objects.

9.4 Bi-clustering

Bi-clustering is also called bi-dimensional clustering [54],
co-clustering, coupled clustering, or bimodal clustering. Bi-
clustering is popular in bioinformatics research, especially in
gene or sample clustering. For gene expression data, there
are experimental conditions in which the activity of genes
is uncorrelated. This causes limitations for results obtained
by standard clustering methods. So bi-clustering algorithms
that can perform simultaneous clustering on the genes and
conditions are developed to find subgroups of genes and
subgroups of conditions in which the genes exhibit highly
correlated activities for every condition [168].

Examples are as follows. CTWC (Coupled Two-Way
Clustering) [104] generates submatrices by an iterative process
and considers only those submatrices whose rows and columns
belong to genes and samples/conditions that were in a stable
cluster in a previous iteration. ITWC (Interrelated Two-
Way Clustering) [230] clusters the rows and then clusters the
columns, based on each row cluster. It keeps the cluster pairs
that are most dissimilar. Block Clustering [120] sorts the data
by row mean or column mean and splits the rows or columns
such that the variance within each ‘block’ is reduced. It then
repeats and splits rows or columns differently. δ -biclusters [54]
or CC algorithm (Cheng and Church’s) finds biclusters whose
rows and conditions show coherent values, using mean-squared
residue. SAMBA (Statistical-Algorithmic Method for Bicluster
Analysis) [229] uses probabilistic modeling and graph theoretic
techniques to find subsets of rows whose values are very
different in a subset of columns. Plaid Models [159] allows
biclusters to overlap, i.e. a gene or a sample/condition can
belong to more than one cluster. Information-theoretic co-
clustering [72] intertwines the row and column clusterings to
increase mutual information.

9.5 Correlation Clustering

Correlation clustering uses the correlations among attributes
to guide the clustering process. These correlations may be
different and exist in different clusters and cannot be reduced to
uncorrelated ones by traditional global decorrelation techniques.
Such correlations create clusters with different spatial shapes,
and local correlation patterns are used to define the similarity
between data objects. Correlation clustering is closely related
to biclustering.

Examples are as follows. ORCLUS (ORiented projected
CLUSter generation) [4] is similar to k-means but uses a
distance function based on an eigensystem, i.e. the distance
in the projected subspace. The eigensystem is adapted during
iterations and close pairs of clusters are merged. 4C (Computing
Correlation Connected Clusters) [34] takes a density-based
approach and uses a density criterion to grow clusters. The
density criterion is the minimal number of data objects within
the neighborhood of a data object. The neighborhood is based
on distance between two data objects in the eigensystems.
HiCO (Hierarchical COrrelation clustering) [2] defines the

IJCA, Vol. 28, No. 2, June 2021 101

similarity between two data objects based on their local
correlation dimensionality and subspace orientation. It takes
a hierarchical density-based approach to obtain correlation
clusters. CASH (Clustering in Arbitrary Subspaces based on the
Hough transform) [1] is based on the Hough transform [129],
which maps the data space into parameter space. It then uses
a grid-based approach to find dense regions in the parameter
space and corresponding data subsets in the original data space.
It recursively applies itself on such corresponding data subsets.

10 Other Clustering Techniques

10.1 Neural Network-Based Clustering

The neural network approach has been studied intensively
by mathematicians, statisticians, physicists, engineers,
and computer scientists [157]. A neural network is an
interconnected group of artificial neurons and an adaptive
system for information processing. Neural-network-
based clustering is competitive-learning-based clustering,
not statistical model-identification based clustering. For
competitive-learning-based clustering, the first phase is
learning where the algorithmic parameters are adjusted, and the
second phase is generalization [74]. Competitive learning can
be implemented using a two-layer neural network: the input
layer and the output layer [74].

Examples are as follows. A SOM (Self-Organizing
Map) [153] consists of nodes or neurons, each of which is
associated with a weight vector and a position in the map
space. It creates a mapping from a higher dimensional input
space to a lower dimensional output space. SOM clustering
computes the distance of the input pattern to each neuron and
finds the winning neuron. LVQ (Learning Vector Quantization)
or VQ (Vector Quantization) [39, 102] is a classical quantization
technique for signal processing. It models the probability
density functions by using the distribution of prototype vectors.
It divides a set of vectors into groups that have approximately
the same number of vectors closest to them. Basic VQ is k-
means clustering, and LVQ is a precursor to self-organizing
maps (SOM) [102]. Neural gas [171] is inspired by SOM. It is
a simple algorithm and finds optimal data representations based
on feature vectors. During the adaptation process, the feature
vectors distribute themselves dynamically like a gas within the
data space. ART model is covered in Section 8.4.

10.2 Evolutionary Clustering

Evolutionary computation has many applications in computer
science, bioinformatics, pharmacometrics, engineering,
physics, and economics. Evolutionary computation is inspired
by the biological mechanisms of evolution, and uses iterative
processes such as growth or development followed by selection
in a population of candidate solutions. Clustering methods that
use local search techniques including hill-climbing approach-
based k-means suffer from local minima problems. The recent
advancements in evolutionary computational technologies [92]

provide an alternate and effective way to find the global or
approximately global optimum [256]. PSO (Particle Swarm
Optimization) simulates social behavior in nature, such as
bird flocking or fish schooling [148]. ACO (Ant Colony
Optimization) algorithms model the behaviors of ants in
nature [73]. GAs (Genetic Algorithms) [127] mimic natural
selection and use evolutional mechanisms such as crossover,
mutation and selection to generate solutions.

Examples are as follows. PPO (Particle-Pair Optimizer) [75]
is a modification of the Particle Swarm Optimizer. It uses two
particle pairs to search for the global optima in parallel and uses
k-means for efficient clustering. Niching genetic k-means [213]
modifies Deterministic Crowding [169], one of the niching
genetic algorithms, and incorporates one step of k-means into its
regeneration steps [213]. EvoCluster algorithm [166] encodes
cluster structure in a chromosome, in which one gene represents
one cluster or the objects belonging to one cluster. Reproduction
operators are used between chromosomes. GenClust [103] is
a simple algorithm and proceeds in stages. It uses genetic
operators and a fitness function to compute partitions in a new
stage based on partitions in the previous stage.

10.3 Kernel Clustering

Kernel-based learning such as Support Vector Machines
(SVMs) [61, 208, 199] has had successful applications in
pattern recognition and machine learning and is becoming
increasingly important [199]. Kernel methods [62] perform
a nonliner mapping of the low dimensional input data into a
high dimensional space, which becomes linearly separable. To
improve efficiency, they avoid explicitly defining the nonlinear
mapping by using kernel functions, such as polynomial kernels,
sigmoid kernels, and Gaussian radial basis function (RBF)
kernels. This is the known as the kernel trick.

Examples are as follows. SVC (Support Vector
Clustering) [239, 265] uses SVM training to find the cluster
boundaries and an adjacency matrix to assign a cluster
label to each data object [256]. Variations of SVC include
Iterative One-Class SVC [40], and rough Set SVC [192].
Kernel k-means [107] uses a kernel method to calculate the
distance between items in a data set, instead of using the
Euclidean distance as in regular k-means. Variations include
Incremental Kernel-k-means [209]. Kernel deterministic
annealing clustering [262] uses an adaptively selected Gaussian
parameter and a Gaussian kernel to determine the nonlinear
mapping. Kernel fuzzy clustering [164, 268, 270] applies
kernel techniques to fuzzy clustering algorithms by replacing
the original Euclidean distance with a kernel-induced distance.
Kernel Self-Organizing Maps [10, 35, 158] perform self-
organizing between an input data object and the corresponding
prototype in the mapped high dimensional feature space or in
the mapped space completely.

102 IJCA, Vol. 28, No. 2, June 2021

10.4 Sequential Data Clustering

Sequential data are sequences of numerical data or non-
numerical symbols and can be generated from speech
processing, video analysis, text mining, gene sequencing, and
medical diagnosis. Time series data or temporal data are
a type of sequential data, which, unlike static data, contain
feature values that change over time. Since sequential data
usually have variable length, dynamic behaviors, and time
constraints [116, 228], they cannot be represented as points in
the multi-dimensional feature space and thus cannot be analyzed
using any of the clustering techniques we have mentioned
thus far [256]. Clustering techniques targeting sequential data
have been developed, and they commonly use three strategies:
proximity-based approaches, feature-based approaches, and
model-based approaches.

Proximity-based approaches use proximity information such
as the distance or similarity between pairs of sequences. They
then use hierarchical or partitional clustering algorithms to
group the sequences into clusters [256]. Examples are as
follows. The Needleman-Wunsch algorithm [78, 184] uses
basic dynamic programming and is a global optimal alignment
algorithm. The Smith-Waterman algorithm [78, 217] is based
on Needleman-Wunsch algorithm, and also uses dynamic
programming. It compares multi-lengthed sequence segments
using character-to-character pair-wise comparisons. FASTA
(FAST-All) [194] first finds segments of the two sequences
that have some degree of similarity and marks these potential
matches. It then performs a more time-consuming optimized
search approach such as the Smith-Waterman algorithm.
BLAST (Basic Local Alignment Search Tool) [8] searches
for short alignment matches between two sequences using a
heuristic approach, which approximates the Smith-Waterman
algorithm. GeneRage [82] automatically clusters sequence
datasets by using Smith-Waterman dynamic programming
alignment and single-linkage clustering. SEQOPTICS
(SEQuence clustering with OPTICS) [52] implements Smith-
Waterman algorithms as the distance measurement and uses
OPTICS [11] to perform sequence clustering.

Feature-based approaches map sequences onto multi-
dimensional data points using feature extraction methods
and then use vector-based clustering algorithms on the data
points [256]. Examples are as follows. Scalable sequential
data clustering [115] uses a k-means based clustering algorithm
which has near-linear time complexity to improve the scalability
problem. Pattern-oriented hierarchical clustering [179] uses a
hierarchical algorithm, which can generate the clusters as well
as the clustering models based on sequential patterns found
in the database. The wavelet-based anytime algorithm [237]
combines a novel k-means based clustering algorithm and the
multi-resolution property of wavelets. It repeatedly uses coarse
clustering to obtain a clustering at a slightly finer level of
approximation.

Model-based approaches assume sequences that belong to
one cluster are generated from one probabilistic model [256].
Examples are as follows. Autoregressive moving average

(ARMA) models [18, 253] derive an EM algorithm to learn
the mixing coefficients and the parameters of the component
ARMA models. They use the Bayesian information criterion
(BIC) to determine the number of clusters. The Markov chain
approach [202, 219] models dynamics as Markov chains and
then applies an agglomerative clustering procedure to discover
a set of clusters that best capture different dynamics. The
Polynomial models approach [17, 97] assumes the underlying
model is a mixture of polynomial functions. It uses an EM
algorithm to estimate the cluster membership probabilities,
using weighted least squares to fit the models. The Hidden
Markov Model (HMM) [188, 218] is a probabilistic model-
based approach. It uses HMMs, which have shown capabilities
in modeling the structure of the generative processes underlying
real-world time series data.

10.5 Ensemble Clustering

Clustering ensembles have emerged to improve robustness,
stability and accuracy of clustering results [105]. A cluster
ensemble combines the results of multiple clustering algorithms
to obtain a consensus result [197]. It can produce better
average performance and avoid worst case results. Other
usages of clustering ensembles include improving scalability
by performing clustering on subsets of data in parallel and
then combining the results, and data integration when data is
distributed across multiple sources [137].

There are two main steps in a clustering ensemble: generation
and consensus. In the generation step, several approaches
are used [235]: different clustering algorithms, a single
algorithm with different parameter initializations, different
object representations, different object projections, and different
subsets of objects.

In the consensus step, several approaches are used:
relabeling and voting, Mutual Information (MI), co-association
based functions, finite mixture models, a graph/hypergraph
partitioning approach, and others.

The relabeling and voting approach is also called the direct
approach. It finds the correspondence of the cluster labels
among different clustering results and then uses a voting method
to determine the final cluster label for a data object. Examples
are as follows. BagClust1 [76] applies a clustering procedure
to each bootstrap sample and obtains the final partition by
plurality voting so that the majority cluster label for each data
object determines the final cluster membership. BagClust2 [76]
introduces a new dissimilarity matrix which contains the
proportion of time each pair of data objects were clustered
together in the bootstrap clusters. It then performs clustering
on the dissimilarity matrix to obtain the final partition.

The MI approach uses MI to measure and quantify the
statistical information shared between a pair of clusterings. It
can automatically select the best clustering method from several
algorithms. Examples are as follows. A Genetic Algorithm
(GA) clustering ensemble [15] uses a GA to obtain the best
partition and the co-association function as the consensus

IJCA, Vol. 28, No. 2, June 2021 103

function. It determines fitness function parameters based on
co-association function values. The information theory based
GA clustering ensemble [165] uses a GA to find a combined
clustering by minimizing an information-theoretical criterion
function. The generalized MI clustering ensemble [233]
introduces a new consensus function using a generalized mutual
information definition. The consensus function is related to the
classical intraclass variance criterion.

The co-association based functions approach is also called
the pair-wise approach. It uses a co-association matrix in the
consensus step. Examples are as follows. Clusterfusion [147]
first generates an agreement matrix with each cell containing
the number of agreements amongst clustering methods and
then uses the matrix to cluster data objects. Voting-k-
Means [95] transforms data partitions into a co-association
matrix with coherent association mappings. It then extracts
underlying clusters from this matrix. Evidence accumulation-
based clustering [96] maps data partitions created by each
individual clustering into a new similarity matrix, based on
voting. It then uses the single link algorithm to extract clusters
from this matrix.

Finite mixture model approach assumes that the probability
of assigning a label to a data object is based on a finite mixture
model or that the labels are ‘modeled as random variables
drawn from a probability distribution described as a mixture
of multivariate component densities’ [235]. It obtains the
consensus clustering result by solving a maximum likelihood
estimation problem. Mixture model clustering ensemble [234]
uses a probabilistic model of consensus based on a finite mixture
of multinomial distributions in a space of clusterings. It finds
a combined partition by solving the corresponding maximum
likelihood problem with the EM algorithm.

The graph/hypergraph partitioning approach considers the
combination problem as a graph or hypergraph partitioning
problem. Methods taking this approach differ in how they build
a (hyper)graph from the clusterings, as well as how they define
the cuts on the graph to obtain the consensus partition [235].
Examples are as follows. METIS [144] is a multi-level graph
partitioning system. It collapses vertices and edges of the graph,
partitions the resulting coarsened graph, and then refines the
partitions. SPEC (spectral graph partitioning algorithm) [186]
tries to optimize the normalized cut criterion. It treats the
rows of the largest eigenvalues matrix as multiple dimensional
embeddings of the vertices of the graph and then uses k-means
to cluster the embedded points. CSPA (Cluster based Similarity
Partitioning Algorithm) [227] first creates a graph based on a
co-association matrix, and then performs METIS clustering on
the graph. HGPA (Hypergraph Partitioning Algorithm) [227]
uses a hyperedge in a graph to represent each cluster. It
then uses minimal cut algorithms such as HMETIS [142] to
find good hypergraph partitions. MCLA (Meta Clustering
Algorithm) [227] determines soft cluster membership values
for each data object by using hyperedge collapsing operations.
HBGF (Hybrid Bipartite Graph Formulation) [90] constructs a
bipartite graph where data objects and clusters are both modeled

as vertices. It later partitions the bipartite graph with an
appropriate graph partitioning method.

Other approaches are as follows. The cumulative voting
consensus method [14] solves the cluster label alignment
problem by using cumulative voting, where a probabilistic
mapping between labels is computed. Bipartite Merger and
Metis merger [128] are approaches for merging an ensemble
of clustering solutions using sets of cluster centers. They
are highly scalable and provide competitive results. Weighted
consensus clustering [160] weights each input clustering. It
determines weights in a way so that the clusters are better
separated. Bayesian Cluster Ensembles [240] takes a Bayesian
approach to combine clusterings. It uses a variational
approximation based algorithm for learning. This way, it is able
to avoid the cluster label correspondence problems. Figure 8
shows an example of ensemble clustering.

Figure 8: Ensemble clustering [133]

10.6 Multi-objective Clustering

Conventional clustering algorithms use a single clustering
objective function only, which may not be appropriate for
the diversities of the underlying data structures. Multi-
objective clustering uses multiple clustering objective functions
simultaneously. Such methods consider clustering as a multi-
objective optimization problem [89].

Examples are as follows. FCPSO (Fuzzy Clustering-based
Particle Swarm Optimization) [6] uses an external repository
to save nondominated particles during the search process and a
fuzzy clustering technique to manage the size of the repository.
It also uses a fuzzy-based iterative feedback mechanism
to determine the compromised solution among conflicting
objectives. Evolutionary Multiobjective Clustering [118]
and MOCK (MultiObjective Clustering with automatic k-
determination) [119] use an evolutionary approach to solve
the multi-objective problem in clustering. They are based
on a multi-objective evolutionary algorithm named PESA-II
(Pareto Envelope-based Selection Algorithm version 2) [59]
to optimize two complementary clustering objectives. Multi-
objective real coded genetic fuzzy clustering [181] aims to
optimize multiple validity measures simultaneously. It encodes
the cluster centers in its chromosomes while optimizing the
fuzzy compactness within a cluster and fuzzy separation among

104 IJCA, Vol. 28, No. 2, June 2021

clusters. EMO-CC (Evolutionary MultiObjective Conceptual
Clustering) [203] combines evolutionary algorithms with multi-
objective optimization techniques and relies on the NSGA-II
multi-objective genetic algorithm [66]. It can discover less
obvious but informative data associations.

10.7 Semi-supervised Clustering

Semi-supervised clustering provides limited supervision to
unsupervised clustering. There are many cases when some
knowledge about the data is available such as the constraints
between data objects or cluster labels for some data objects.
Such knowledge can be used to guide the clustering process.
There are several approaches for semi-supervised clustering:
similarity-adapting methods, search-based methods, and other
methods.

Similarity-adapting methods use a similarity measure which
is adapted to make the available constraints more easily
satisfied [111]. Examples are as follows. Distance metric
learning based clustering [252] learns a distance metric based
on examples of similar pairs of data objects in the input
space using convex optimization. Space-level constraints based
clustering [150] exploits space-level implications based on
instance-level constraints. It uses an all-pairs-shortest-paths
algorithm to adjust the distance metric.

Search-based methods modify the clustering algorithm itself
to use the available constraints or labels to guide the search
for an appropriate clustering [111]. Examples are as follows.
Seeded-K Means and Constrained-K Means [23] generate
initial seed clusters based on labeled data. The latter also
generates constraints from labeled data and guides the clustering
process using those constraints. Semi-Supervised Clustering
Using Genetic Algorithms [68] modifies k-means clustering
to minimize within-cluster variance and a measure of cluster
impurity. Clustering with Instance-level Constraints [238]
incorporates hard constraints using a modified version of
Cobweb (covered in Section 8.4) which partitions the data.

Other methods include the probabilistic semi-supervised
clustering with constraints method [24], which derives an
objective function from the joint probability defined over the
Hidden Markov Random Field model and performs semi-
supervised clustering by minimizing this object function.

11 Conclusions

We have presented a survey of the literature on clustering
techniques. For convenience, in this review we used the
following taxonomy, which is also widely used in the
literature: hierarchical clustering (Section 2), partitioning
clustering (Section 3), graph-based clustering (Section 4),
distribution-based clustering (Section 5), density-based
clustering (Section 6), grid-based clustering (Section 7),
clustering big data (Section 8), clustering high dimensional data
(Section 9), and other clustering techniques (Section 10).

References

[1] Elke Achtert, Christian Böhm, Jörn David, Peer Kröger,
and Arthur Zimek. “Global Correlation Clustering Based
on the Hough Transform”. Statistical Analysis and Data
Mining, 1(3):111–127. 2008.

[2] Elke Achtert, Christian Böhm, Peer Kröger, and Arthur
Zimek. “Mining Hierarchies of Correlation Clusters”. In
“Scientific and Statistical Database Management, 2006.
18th International Conference on”, IEEE, pp. 119–128.
2006.

[3] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia
Procopiuc, and Jong Soo Park. “Fast Algorithms for
Projected Clustering”. In “SIGMOD ’99: Proceedings
of the 1999 ACM SIGMOD International Conference on
Management of Data”, ACM, New York, NY, USA, pp.
61-72. doi:10.1145/304182.304188. 1999.

[4] Charu C. Aggarwal and Philip S. Yu. “Finding
Generalized Projected Clusters in High Dimensional
Spaces”. SIGMOD Rec., 29(2):70–81. doi:10.1145/
335191.335383. May 2000.

[5] Rakesh Agrawal, Johannes Gehrke, Dimitrios
Gunopulos, and Prabhakar Raghavan. “Automatic
Subspace Clustering of High Dimensional Data for Data
Mining Applications”. SIGMOD Rec., 27(2):94–105.
doi:10.1145/276305.276314. Jun. 1998.

[6] Shubham Agrawal, B. K. Panigrahi, and Manoj Kumar
Tiwari. “Multiobjective Particle Swarm Algorithm with
Fuzzy Clustering for Electrical Power Dispatch.” IEEE
Trans. Evolutionary Computation, 12(5):529–541. 2008.

[7] Khaled S. Al-Sultan and Shokri Z. Selim. “A Global
Algorithm for the Fuzzy Clustering Problem.” Pattern
Recognition, 26(9):1357–1361. 1993.

[8] Stephen F. Altschul, Warren Gish, Webb Miller,
Eugene W. Myers, and David J. Lipman. “Basic
Local Alignment Search Tool”. Journal of Molecular
Biology, 215(3):403 – 410. doi:http://dx.doi.org/10.1016/
S0022-2836(05)80360-2. 1990.

[9] G.C. Anagnostopoulos and M. Georgiopoulos. “Ellipsoid
ART and ARTMAP for Incremental Clustering and
Classification”. In “IJCNN’01. International Joint
Conference on Neural Networks. Proceedings (Cat.
No.01CH37222)”, pp. 1221–1226 vol.2. doi:10.1109/
IJCNN.2001.939535. 2001.

[10] Peter Andras. “Kernel-Kohonen Networks.” Int. J.
Neural Syst., 12(2):117–135. 2002.

[11] Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jörg Sander. “OPTICS: Ordering Points
to Identify the Clustering Structure”. SIGMOD Rec.,
28(2):49–60. doi:10.1145/304181.304187. Jun. 1999.

[12] David Arthur and Sergei Vassilvitskii. “k-means++:
The Advantages of Careful Seeding”. In “Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07)”, Society for Industrial

IJCA, Vol. 28, No. 2, June 2021 105

and Applied Mathematics, Philadelphia, PA, USA, pp.
1027–1035. 2007.

[13] Roberto Avogadri and Giorgio Valentini. “Fuzzy
Ensemble Clustering Based on Random Projections for
DNA Microarray Data Analysis”. Artificial Intelligence
in Medicine, 45(2):173–183. 2009.

[14] Hanan G Ayad and Mohamed S Kamel. “Cumulative
Voting Consensus Method for Partitions with Variable
Number of Clusters”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(1):160–173.
2008.

[15] J. Azimi, M. Mohammadi, A. Movaghar, and
M. Analoui. “Clustering Ensembles Using Genetic
Algorithm”. In “International Workshop on
Computer Architecture for Machine Perception and
Sensing, 2006. CAMP 2006.”, pp. 119–123. doi:
10.1109/CAMP.2007.4350366. 2007.

[16] G. Phanendra Babu and M. Narasimha Murty. “A
Near-Optimal Initial Seed Value Selection in K-means
Means Algorithm Using a Genetic Algorithm.” Pattern
Recognition Letters, 14(10):763–769. 1993.

[17] A. Bagnall, G. Janacek, B. Iglesia, and M. Zhang.
“Clustering Time Series from Mixture Polynomial
Models with Discretized Data”. In “Proc. 2nd
Australasian Data Mining Workshop”, pp. 105–120.
2003.

[18] Anthony J. Bagnall and Gareth J. Janacek. “Clustering
Time Series from ARMA Models with Clipped Data.” In
Won Kim, Ron Kohavi, Johannes Gehrke, and William
DuMouchel, editors, “KDD”, ACM, pp. 49–58. 2004.

[19] G. H. Ball and D. J. Hall. “ISODATA, an
Iterative Method of Multivariate Analysis and Pattern
Classification”. IFIPS Congress. 1965.

[20] A. Baraldi and E. Alpaydin. “Constructive Feedforward
ART Clustering Networks – Part I and II”. IEEE Trans.
Neural Netw., 13(3). May 2002.

[21] D. Barbara and P. Chen. “Using the Fractal Dimension
to Cluster Datasets”. In “Proc. of the 6th International
Conference on Knowledge Discovery and Data Mining”,
ACM, pp. 260–264. 2000.

[22] Daniel Barbara, Julia Couto, and Yi Li. “COOLCAT: An
Entropy-Based Algorithm for Categorical Clustering”. In
“In Proceedings of the Eleventh International Conference
on Information and Knowledge Management”, ACM, pp.
582–589. 2002.

[23] S. Basu, A. Banerjee, and R. Mooney. “Semi-
Supervised Clustering by Seeding”. In “Proceedings of
the International Conference on Machine Learning”, pp.
27–34. 2002.

[24] Sugato Basu, Mikhail Bilenko, Arindam Banerjee, and
Raymond J Mooney. “Probabilistic Semi-Supervised
Clustering with Constraints”. Semi-Supervised Learning,
pp. 71–98. 2006.

[25] Stephen D. Bay and Michael J. Pazzani. “Detecting
Change in Categorical Data: Mining Contrast Sets”. In
“Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining”,
ACM, New York, NY, USA, KDD ’99, pp. 302–306. doi:
10.1145/312129.312263. 1999.

[26] Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum.
“Multi-way Distributional Clustering via Pairwise
Interactions”. In “Proceedings of the 22nd International
Conference on Machine learning”, ACM, pp. 41–48.
2005.

[27] Mikhail Belkin and Partha Niyogi. “Laplacian
Eigenmaps for Dimensionality Reduction and Data
Representation”. Neural Computation, 15(6):1373–
1396. 2003.

[28] Pavel Berkhin. “Survey Of Clustering Data Mining
Techniques”. Tech. rep., Accrue Software, San Jose, CA.
2002.

[29] J. Bezdek, C. Coray, R. Gunderson, and J. Watson.
“Detection and Characterization of Cluster Substructure
I. Linear Structure: Fuzzy c-Lines”. SIAM Journal
on Applied Mathematics, 40(2):339–357. doi:10.1137/
0140029. 1981.

[30] D. A. Binder. “Bayesian Cluster Analysis”. Biometrika,
65(1):31–38. 1978.

[31] C. Bishop. Neural Networks for Pattern Recognition.
Oxford Univ. Press. 1995.

[32] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
“Latent Dirichlet Allocation”. J. Mach. Learn. Res.,
3:993–1022. Mar. 2003.

[33] Hans H. Bock. “Probabilistic Models in Cluster
Analysis”. Computational Statistics & Data Analysis,
23(1):5–28. Nov. 1996.

[34] Christian Böhm, Karin Kailing, Hans-Peter Kriegel, and
Peer Kröger. “Density Connected Clustering with Local
Subspace Preferences.” In “ICDM”, IEEE Computer
Society, pp. 27–34. 2004.

[35] Romain Boulet, Bertrand Jouve, Fabrice Rossi, and
Nathalie Villa. “Batch Kernel SOM and Related
Laplacian Methods for Social Network Analysis”.
Neurocomputing, 71(7-9):1257–1273. 2008.

[36] Christos Boutsidis, Anastasios Zouzias, and Petros
Drineas. “Random Projections for K-Means Clustering.”
In “Advances in Neural Information Processing
Systems”, pp. 298–306. 2010.

[37] Paul S. Bradley, Usama M. Fayyad, and Cory Reina.
“Scaling Clustering Algorithms to Large Databases”. In
“Knowledge Discovery and Data Mining”, pp. 9–15.
1998.

[38] Nathan Brannon, John Seiffertt, Timothy Draelos, and
Donald C. Wunsch II. “Coordinated Machine Learning
and Decision Support for Situation Awareness.” Neural
Networks, 22(3):316–325. 2009.

106 IJCA, Vol. 28, No. 2, June 2021

[39] D. Burton, J. Shore, and J. Buck. “A Generalization of
Isolated Word Recognition Using Vector Quantization”.
In “Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP ’83.”, vol. 8, pp.
1021–1024. doi:10.1109/ICASSP.1983.1171915. Apr
1983.

[40] Francesco Camastra and Alessandro Verri. “A Novel
Kernel Method for Clustering.” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 27(5):801–
804. 2005.

[41] G. A. Carpenter, S. Grossberg, N. Markuzon, J.H.
Reynolds, and D.B. Rosen. “Fuzzy ARTMAP: A
Neural Network Architecture for Incremental Supervised
Learning of Analog Multidimensional Maps”. IEEE
Transactions on Neural Networks, 3(5):698–713.
September 1992.

[42] Gail A. Carpenter and Stephen Grossberg. “ART 2: Self-
Organization of Stable Category Recognition Codes for
Analog Input Patterns”. Applied Optics, 26(23):4919–
4930. 1987.

[43] Gail A. Carpenter and Stephen Grossberg. “A
Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine”. Computer Vision,
Graphics, and Image Processing, 37(1):54–115. 1987.

[44] Gail A. Carpenter, Stephen Grossberg, and John H.
Reynolds. “ARTMAP: Supervised Real-Time Learning
and Classification of Nonstationary Data by a Self-
Organizing Neural Network”. Neural Networks,
4(5):565–588. 1991.

[45] Thomas P Caudell, Scott DG Smith, G Craig Johnson,
and Donald C Wunsch II. “Application of Neural
Networks to Group Technology”. In “Proceedings
of SPIE 1469, Applications of Artificial Neural
Networks II”, SPIE–The International Society for Optical
Engineering, pp. 612–621. Jan 1991.

[46] Soumen Chakrabarti. Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan Kaufmann.
2003.

[47] Jae-Woo Chang and Du-Seok Jin. “A New Cell-Based
Clustering Method for Large, High-Dimensional Data in
Data Mining Applications”. In “Proceedings of the 2002
ACM Symposium on Applied Computing”, ACM, pp.
503–507. 2002.

[48] Moses Charikar, Chandra Chekuri, Tomás Feder, and
Rajeev Motwani. “Incremental Clustering and Dynamic
Information Retrieval”. In “Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of
Computing”, ACM, New York, NY, USA, STOC ’97, pp.
626–635. doi:10.1145/258533.258657. 1997.

[49] Peter Cheeseman and John Stutz. “Advances in
Knowledge Discovery and Data Mining”. In Usama M.
Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth,
and Ramasamy Uthurusamy, editors, “Bayesian
Classification (AutoClass): Theory and Results”,

American Association for Artificial Intelligence, Menlo
Park, CA, USA, pp. 153–180. 1996.

[50] Jiun-Rung Chen. Efficient Biclustering Methods for
Microarray Databases. Ph.D. thesis, National Sun Yat-
sen University. 2010.

[51] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-
Jen Lin, and Edward Y Chang. “Parallel Spectral
Clustering in Distributed Systems”. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 33(3):568–
586. 2011.

[52] Yonghui Chen, Kevin D Reilly, Alan P Sprague, and
Zhijie Guan. “SEQOPTICS: A Protein Sequence
Clustering System”. BMC Bioinformatics, 7(Suppl
4):S10. 2006.

[53] Chun Hung Cheng, Ada Wai-Chee Fu, and Yi Zhang.
“Entropy-Based Subspace Clustering for Mining
Numerical Data.” In Usama M. Fayyad, Surajit
Chaudhuri, and David Madigan, editors, “KDD”, ACM,
pp. 84–93. 1999.

[54] Yizong Cheng and George M. Church. “Biclustering of
Expression Data”. In “Proc. of the 8th Intelligent Systems
for Molecular Biology”, AAAI Press, pp. 93–103. 2000.

[55] Chire. “Density-Based Clustering with DBSCAN”.
URL http://commons.wikimedia.org/wiki/File:
DBSCAN-density-data.svg. Accessed Oct. 2015.
2011.

[56] Chire. “Expectation-Maximization (EM) Clustering
Examples”. URL http://commons.wikimedia.org/wiki/
File:EM-Gaussian-data.svg. Accessed Oct. 2015. 2011.

[57] Chire. “k-Means Clustering Examples”.
URL http://commons.wikimedia.org/wiki/File:
KMeans-Gaussian-data.svg. Accessed Oct. 2015.
2011.

[58] Robson Leonardo Ferreira Cordeiro, Agma J. M. Traina,
and Christos Faloutsos. “Finding Clusters in Subspaces
of Very Large, Multi-Dimensional Datasets”. In “IEEE
26th International Conference on Data Engineering
(ICDE), 2010”, IEEE, pp. 625–636. 2010.

[59] David W. Corne, Nick R. Jerram, Joshua D. Knowles,
and Martin J. Oates. “PESA-II: Region-Based Selection
in Evolutionary Multiobjective Optimization”. In
“Proceedings of the 3rd Annual Conference on Genetic
and Evolutionary Computation”, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, GECCO’01,
p. 283–290. 2001.

[60] Carlos D Correa and Peter Lindstrom. “Locally-Scaled
Spectral Clustering Using Empty Region Graphs”. In
“Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining”,
ACM, pp. 1330–1338. 2012.

[61] Corinna Cortes and Vladimir Vapnik. “Support-Vector
Networks”. Machine learning, 20(3):273–297. doi:10.
1023/a:1022627411411. Sep. 1995.

IJCA, Vol. 28, No. 2, June 2021 107

[62] Nello Cristianini and John Shawe-Taylor. An
Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University
Press, 1st edn. Mar. 2000.

[63] R. D’Andrade. “U-Statistic Hierarchical Clustering”.
Psychometrika, 4. 1978.

[64] M. Dash, H. Liu, and Xiaowei Xu. “’1+1 > 2’: Merging
Distance and Density Based Clustering”. In “Database
Systems for Advanced Applications, 2001. Proceedings.
Seventh International Conference on”, IEEE Computer
Society, pp. 32 –39. doi:10.1109/DASFAA.2001.916361.
april 2001.

[65] N. E. Day. “Estimating the Components of a Mixture of
Normal Distributions”. Biometrika, 56(3):463–474. doi:
10.1093/biomet/56.3.463. 1969.

[66] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan. “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II”. IEEE Transactions on
Evolutionary Computation,, 6(2):182–197. 2002.

[67] D. Defays. “An Efficient Algorithm for a Complete
Link Method”. The Computer Journal (British Computer
Society), 20(4):364–366. 1977.

[68] Ayhan Demiriz, Kristin Bennett, and Mark J.
Embrechts. “Semi-Supervised Clustering Using
Genetic Algorithms”. In “Artificial Neural Networks in
Engineering (ANNIE-99)”, ASME Press, pp. 809–814.
1999.

[69] A. P. Dempster, N. M. Laird, and D. B. Rubin.
“Maximum Likelihood From Incomplete Data via the
EM Algorithm”. Journal of the Royal Statistical Society,
Series B, 39(1):1–38. 1977.

[70] I. Dhillon and D. Modha. “A Data Clustering Algorithm
on Distributed Memory Multiprocessors”. In “5th
ACM SIGKDD, Large-scale Parallel KDD Systems
Workshop”, pp. 245–260. 1999.

[71] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis.
“Kernel K-Means: Spectral Clustering and Normalized
Cuts”. In “Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining”, ACM, pp. 551–556. 2004.

[72] Inderjit S Dhillon, Subramanyam Mallela, and
Dharmendra S Modha. “Information-Theoretic Co-
Clustering”. In “Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining”, ACM, pp. 89–98. 2003.

[73] Marco Dorigo and Thomas Stützle. “The Ant Colony
Optimization Metaheuristic: Algorithms, Applications,
and Advances”. In “Handbook of Metaheuristics”,
Springer, pp. 250–285. 2003.

[74] K.-L. Du. “Clustering: A Neural Network Approach.”
Neural Networks, 23(1):89–107. 2010.

[75] Zhihua Du, Yiwei Wang, and Zhen Ji. “PK-means: A
New Algorithm for Gene Clustering.” Computational
Biology and Chemistry, 32(4):243–247. 2008.

[76] Sandrine Dudoit and Jane Fridlyand. “Bagging to
Improve the Accuracy of a Clustering Procedure”.
Bioinformatics, 19(9):1090–1099. 2003.

[77] Joseph C. Dunn. “A Fuzzy Relative of the ISODATA
Process and its use in Detecting Compact Well-Separated
Clusters”. Journal of Cybernetics, 3:32–57. 1973.

[78] Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press. 1998.

[79] A. W. F. Edwards and L. L. Cavalli-Sforza. “A Method
for Cluster Analysis”. Biometrics, 21:362–375. 1965.

[80] C. Eldershaw and M. Hegland. “Cluster Analysis
Using Triangulation”. Computational Techniques and
Applications, pp. 201–208. 1997.

[81] Charles Elkan. “Using the Triangle Inequality to
Accelerate k-means”. In “Proceedings of the Twentieth
International Conference on Machine Learning (ICML)”,
vol. 3, pp. 147–153. 2003.

[82] A. Enright and C. Ouzounis. “GeneRAGE: A
Robust Algorithm for Sequence Clustering and Domain
Detection”. Bioinformatics, 16(5):451–457. 2000.

[83] S. Eschrich, Jingwei Ke, L.O. Hall, and D.B.
Goldgof. “Fast Accurate Fuzzy Clustering Through
Data Reduction”. IEEE Transactions on Fuzzy
Systems, 11(2):262–270. doi:10.1109/TFUZZ.2003.
809902. 2003.

[84] Martin Ester, Hans P. Kriegel, Jorg Sander, and Xiaowei
Xu. “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise”. In
Evangelos Simoudis, Jiawei Han, and Usama Fayyad,
editors, “Second International Conference on Knowledge
Discovery and Data Mining”, AAAI Press, Portland,
Oregon, pp. 226–231. 1996.

[85] Tim Evans. “Zachary Karate Club Network Clustered
Using Clique Graph methods”. URL http://netplexity.
org/?p=1261. Accessed Oct. 2015. 2014.

[86] B. Everitt, S. Landau, and M. Leese. Cluster Analysis.
London: Arnold. 2001.

[87] B. S. Everitt. “Cluster Analysis”. In “Cluster Analysis,
Second Edition”, Heineman Educational Books Ltd.
1980.

[88] Christos Faloutsos and King-Ip Lin. “FastMap: A Fast
Algorithm for Indexing, Data-mining and Visualization
of Traditional and Multimedia Datasets”. SIGMOD Rec.,
24(2):163–174. doi:10.1145/568271.223812. May 1995.

[89] A. Ferligoj and V. Batagelj. “Direct Multicriterion
Clustering Algorithms”. Journal of Classification, 9:43–
61. 1992.

[90] Xiaoli Zhang Fern and Carla E. Brodley. “Random
Projection for High Dimensional Data Clustering: A
Cluster Ensemble Approach.” In Tom Fawcett and Nina

108 IJCA, Vol. 28, No. 2, June 2021

Mishra, editors, “International Conference on Machine
Learning”, AAAI Press, pp. 186–193. 2003.

[91] Douglas H Fisher. “Knowledge Acquisition via
Incremental Conceptual Clustering”. Machine Learning,
2(2):139–172. 1987.

[92] David B Fogel. Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. John Wiley &
Sons. 2006.

[93] E. W. Forgy. “Cluster Analysis of Multivariate Data:
Efficiency Versus Interpretability of Classifications”.
Biometrics, 21:768–769. 1965.

[94] Ildiko E. Frank and Roberto Todeschini. The Data
Analysis Handbook. Elsevier Science Inc. 1994.

[95] Ana L. N. Fred. “Finding Consistent Clusters in Data
Partitions.” In Josef Kittler and Fabio Roli, editors,
“Multiple Classifier Systems”, Springer, vol. 2096 of
Lecture Notes in Computer Science, pp. 309–318. 2001.

[96] Ana L. N. Fred and Anil K. Jain. “Data Clustering
Using Evidence Accumulation”. In “Proceedings 16th
International Conference on Pattern Recognition”, IEEE,
vol. 4, pp. 276–280. 2002.

[97] Scott Gaffney and Padhraic Smyth. “Trajectory
Clustering with Mixtures of Regression Models”. In
“Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining”,
ACM, pp. 63–72. 1999.

[98] Guojun Gan. Data Clustering in C++: An Object-
Oriented Approach. Chapman & Hall/CRC Data Mining
and Knowledge Discovery Series. Taylor & Francis.
2011.

[99] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data
Clustering - Theory, Algorithms, and Applications.
SIAM. 2007.

[100] Venkatesh Ganti, Johannes Gehrke, and Raghu
Ramakrishnan. “CACTUS - Clustering Categorical
Data Using Summaries”. In “Proceedings of the fifth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, ACM, New York, NY,
USA, KDD ’99, pp. 73–83. doi:10.1145/312129.312201.
1999.

[101] Venkatesh Ganti, Raghu Ramakrishnan, Johannes
Gehrke, Allison Powell, and James French. “Clustering
Large Datasets in Arbitrary Metric Spaces”. In “Data
Engineering, 1999. Proceedings., 15th International
Conference on”, IEEE, pp. 502–511. 1999.

[102] A. Gersho and B. Ramamurthi. “Image Coding Using
Vector Quantization”. International Conference on
Acoustics, Speech, and Signal Processing, 1:428–431.
April 1982.

[103] Vito Di Gesù, Raffaele Giancarlo, Giosuè Lo Bosco,
Alessandra Raimondi, and Davide Scaturro. “GenClust:
A Genetic Algorithm for Clustering Gene Expression
Data”. BMC Bioinformatics, 6(1):289–289. 2005.

[104] Gad Getz, Erel Levine, and Eytan Domany. “Coupled
Two-Way Clustering Analysis of Gene Microarray Data”.
Proceedings of the National Academy of Sciences,
97(22):12079–12084. doi:10.1073/pnas.210134797.
2000.

[105] Reza Ghaemi, Md. Nasir Sulaiman, Hamidah Ibrahim,
and Norwati Mustapha. “A Survey: Clustering
Ensembles Techniques”. World Academy of Science,
Engineering and Technology, 50:636–645. 2009.

[106] David Gibson, Jon Kleinberg, and Prabhakar Raghavan.
“Clustering Categorical Data: An Approach Based on
Dynamical Systems”. The International Journal on
Very Large Data Bases, 8(3-4):222–236. doi:10.1007/
s007780050005. Feb. 2000.

[107] M. Girolami. “Mercer Kernel-Based Clustering in
Feature Space”. Neural Networks, IEEE Transactions
on, 13(3):780–784. doi:10.1109/tnn.2002.1000150. Aug.
2002.

[108] Sanjay Goil, Harsha Nagesh, and Alok Choudhary.
“MAFIA: Efficient and Scalable Subspace Clustering for
Very Large Data Sets”. In “Proceedings of the 5th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, pp. 443–452. 1999.

[109] Teofilo F Gonzalez. “Clustering to Minimize the
Maximum Intercluster Distance”. Theoretical Computer
Science, 38(2-3):293–306. 1985.

[110] J. C. Gower and G. J. S. Ross. “Minimum Spanning
Trees and Single Linkage Cluster Analysis”. Journal of
the Royal Statistical Society. Series C (Applied Statistics),
18(1):54–64. 1969.

[111] Nizar Grira, Michel Crucianu, and Nozha Boujemaa.
“Semi-Supervised Fuzzy Clustering with Pairwise-
Constrained Competitive Agglomeration”. In “Fuzzy
Systems, 2005. FUZZ’05. The 14th IEEE International
Conference on”, IEEE, pp. 867–872. 2005.

[112] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim.
“CURE: An Efficient Clustering Algorithm for Large
Databases”. SIGMOD Record, 27(2):73–84. doi:10.
1145/276305.276312. Jun. 1998.

[113] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim.
“ROCK: A Robust Clustering Algorithm for Categorical
Attributes”. Information Systems, 25(5):345 – 366. doi:
10.1016/S0306-4379(00)00022-3. 2000.

[114] Chetan Gupta and Robert Grossman. “GenIc: A Single
Pass Generalized Incremental Algorithm for Clustering”.
In “Proceedings of the Fourth SIAM International
Conference on Data Mining”, SIAM, pp. 147–153. 2004.

[115] Valerie Guralnik and George Karypis. “A Scalable
Algorithm for Clustering Sequential Data.” In Nick
Cercone, Tsau Young Lin, and Xindong Wu, editors,
“ICDM”, IEEE Computer Society, pp. 179–186. 2001.

[116] Dan Gusfield. Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology. Cambridge University Press. 1997.

IJCA, Vol. 28, No. 2, June 2021 109

[117] Lars Hagen and Andrew B. Kahng. “New Spectral
Methods for Ratio Cut Partitioning and Clustering”.
IEEE Tansactions on Computer-aided Design,
11(9):1074–1085. September 1992.

[118] Julia Handl and Joshua Knowles. “Evolutionary
Multiobjective Clustering”. In “Parallel Problem Solving
from Nature-PPSN VIII”, Springer, pp. 1081–1091.
2004.

[119] Julia Handl and Joshua Knowles. “An Evolutionary
Approach to Multiobjective Clustering”. Evolutionary
Computation, IEEE Transactions on, 11(1):56–76. 2007.

[120] J. A. Hartigan. “Clustering algorithms”. In “Clustering
Algorithms”, John Wiley & Sons, Inc. 1975.

[121] J. A. Hartigan and M. A. Wong. “Algorithm AS 136:
A k-Means Clustering Algorithm”. Journal of the
Royal Statistical Society, Series C (Applied Statistics),
28(1):100–108. 1979.

[122] Alexander Hinneburg, Er Hinneburg, and Daniel A.
Keim. “An Efficient Approach to Clustering in Large
Multimedia Databases with Noise”. In “SIGKDD
Conference on Knowledge Discovery and Data Mining”,
AAAI Press, vol. 98, pp. 58–65. 1998.

[123] Alexander Hinneburg and Daniel A. Keim. “Optimal
Grid-Clustering: Towards Breaking the Curse of
Dimensionality in High-Dimensional Clustering.” In
Malcolm P. Atkinson, Maria E. Orlowska, Patrick
Valduriez, Stanley B. Zdonik, and Michael L. Brodie,
editors, “Proceedings of the 25th International
Conference on Very Large Data Bases”, Morgan
Kaufmann, pp. 506–517. 1999.

[124] Ricky Ho. “Machine Learning in R: Clustering”.
URL http://horicky.blogspot.com/2012/04/
machine-learning-in-r-clustering.html. Accessed Oct.
2015. 2012.

[125] Matthew D. Hoffman, David M. Blei, and Francis R.
Bach. “Online Learning for Latent Dirichlet Allocation”.
In “Advances in Neural Information Processing
Systems”, pp. 856–864. 2010.

[126] Thomas Hofmann and Joachim M. Buhmann. “Pairwise
Data Clustering by Deterministic Annealing”. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 19:1–14. 1997.

[127] J. Holland. Adaption in Natural and Artificial Systems.
Ann Arbor, MI: Univ. Michigan Press. 1975.

[128] Prodip Hore, Lawrence O Hall, and Dmitry B Goldgof.
“A Scalable Framework for Cluster Ensembles”. Pattern
recognition, 42(5):676–688. 2009.

[129] P. V. C. Hough. “Methods and Means for Recognizing
Complex Patterns”. US Patent 3069654. December 1962.

[130] Xiaohua Hu and Illhoi Yoo. “Cluster Ensemble and
its Applications in Gene Expression Analysis”. In
“Proceedings of the Second Conference on Asia-Pacific
Bioinformatics”, Australian Computer Society, Inc.,

Darlinghurst, Australia, vol. 29 of APBC ’04, pp. 297–
302. 2004.

[131] Z. Huang. “Extensions to the k-Means Algorithms for
Clustering Large Data Sets with Categorical Values”.
Data Mining and Knowledge Discovery, 2(3):283–304.
1998.

[132] Christopher L. Huntley and Donald E. Brown. “A
Parallel Heuristic for Quadratic Assignment Problems”.
Computers & Operations Research, 18(3):275–289.
1991.

[133] N. Iam-On, T. Boongeon, S. Garrett, and C. Price. “A
Link-Based Cluster Ensemble Approach for Categorical
Data Clustering”. Knowledge and Data Engineering,
IEEE Transactions on, 24(3):413–425. doi:10.1109/
TKDE.2010.268. March 2012.

[134] V. Ilango, R. Subramanian, and V. Vasudevan. “Cluster
Analysis Research Design Model, Problems, Issues,
Challenges, Trends and Tools”. International Journal
on Computer Science and Engineering, 3(8):2926–2934.
2011.

[135] A. Jain, R. Duin, and J. Mao. “Statistical Pattern
Recognition: A Review”. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(1):4–37. 2000.

[136] A. K. Jain and R. C. Dubes. “Algorithms for Clustering
Data”. In “Prentice-Hall Advanced Reference Series”,
Prentice-Hall, Inc. 1988.

[137] Anil K. Jain. “Data Clustering: User’s Dilemma”.
In “Proceedings of the 5th International Conference
on Machine Learning and Data Mining in Pattern
Recognition”, Springer-Verlag, Berlin, Heidelberg,
MLDM ’07, pp. 1–1. doi:10.1007/978-3-540-73499-4 1.
2007.

[138] Anil K Jain. “Data clustering: 50 Years Beyond K-
Means”. Pattern Recognition Letters, 31(8):651–666.
2010.

[139] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn.
“Data Clustering: A Review”. ACM Computing Surveys
(CSUR), 31(3):264–323. 1999.

[140] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle.
“DBDC: Density Based Distributed Clustering”. In
“Advances in Database Technology-EDBT 2004”,
Springer, pp. 88–105. 2004.

[141] H. D. Jin. Scalable Model-Based Clustering Algorithms
for Large Databases and Their Applications. Ph.D.
thesis, The Chinese University of Hong Kong. Aug.
2002.

[142] G. Karypis, R. Aggarwal, V. Kumar, and Shashi Shekhar.
“Multilevel hypergraph partitioning: Applications in
VLSI domain”. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 7(1):69–79. doi:10.
1109/92.748202. March 1999.

[143] G. Karypis, E. Han, and V. Kumar. “Chameleon:
Hierarchical Clustering Using Dynamic Modeling”.
IEEE Computer, 32(8):68–75. Aug. 1999.

110 IJCA, Vol. 28, No. 2, June 2021

[144] George Karypis and Vipin Kumar. METIS: A
Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices. University of Minnesota,
Department of Computer Science. September 1998.

[145] L. Kaufman and P. Rousseeuw. Clustering by Means of
Medoids. North-Holland. 1987.

[146] Leonard Kaufman and Peter J. Rousseeuw. Finding
Groups in Data: An Introduction to Cluster Analysis, vol.
344. John Wiley & Sons. 2009.

[147] Paul Kellam, Xiaohui Liu, Nigel Martin, Christine
Orengo, Stephen Swift, and Allan Tucker. “Comparing,
Contrasting and Combining Clusters in Viral Gene
Expression Data”. In “Proceedings of 6th Workshop
on Intelligent Data Analysis in Medicine and
Pharmocology”, pp. 56–62. 2001.

[148] James F. Kennedy, James Kennedy, and Russell C.
Eberhart. Swarm Intelligence. Morgan Kaufmann. 2001.

[149] Benjamin King. “Step-Wise Clustering Procedures”.
Journal of the American Statistical Association,
62(317):86–101. 1967.

[150] D. Klein, S. Kamvar, and C. Manning. “From Instance-
Level Constraints to Space-Level Constraints: Making
the Most of Prior Knowledge in Data Clustering”. In
“Proceedings of the 19th International Conference on
Machine Learning”, pp. 307–314. 2002.

[151] R. W. Klein and R. C. Dubes. “Experiments in Projection
and Clustering by Simulated Annealing”. Pattern
Recognition, 22(2):213–220. 1989.

[152] J. Kleinberg. “An Impossibility Theorem for Clustering”.
Proceeding Conference Advances in Neural Information
Processing Systems, 15:463–470. 2002.

[153] Teuvo Kohonen. “Self-Organized Formation of
Topologically Correct Feature Maps”. Biological
Cybernetics, 43(1):59–69. 1982.

[154] Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and
Sebastian Wurst. “A Generic Framework for Efficient
Subspace Clustering of High-Dimensional Data.” In
“Data Mining, Fifth IEEE International Conference on”,
IEEE Computer Society, pp. 250–257. 2005.

[155] Peer Kröger, Hans-Peter Kriegel, and Karin Kailing.
“Density-Connected Subspace Clustering for High-
Dimensional Data.” In Michael W. Berry, Umeshwar
Dayal, Chandrika Kamath, and David B. Skillicorn,
editors, “SDM”, SIAM, vol. 4. 2004.

[156] Joseph B. Kruskal. “On the Shortest Spanning Subtree
of a Graph and the Traveling Salesman Problem”.
Proceedings of the American Mathematical society,
7(1):48–50. 1956.

[157] N. Kumar and R. S. Joshi. “Data Clustering Using
Artificial Neural Networks”. In “Proceedings of
National Conference on Challenges & Opportunities in
Information Technology (COIT-2007)”, pp. 197–200.
2007.

[158] K. W. Lau, H. Yin, and S. Hubbard. “Kernel Self-
Organising Maps for Classification”. Neurocomputing,
69(16-18):2033 – 2040. doi:http://dx.doi.org/10.1016/j.
neucom.2005.10.003. 2006.

[159] Laura Lazzeroni and Art Owen. “Plaid Models for Gene
Expression Data”. Statistica Sinica, 12(1):61–86. 2000.

[160] Tao Li and Chris H. Q. Ding. “Weighted Consensus
Clustering”. In “SDM’08”, pp. 798–809. 2008.

[161] Wei Li and Andrew McCallum. “Pachinko Allocation:
DAG-Structured Mixture Models of Topic Correlations”.
In “Proceedings of the 23rd International Conference on
Machine Learning”, ACM, New York, NY, USA, ICML
’06, pp. 577–584. doi:10.1145/1143844.1143917. 2006.

[162] Wei-keng Liao, Ying Liu, and Alok Choudhary. “A
Grid-Based Clustering Algorithm Using Adaptive Mesh
Refinement”. In “7th Workshop on Mining Scientific and
Engineering Datasets of SIAM International Conference
on Data Mining”, 2004.

[163] Ricardo Linden. “Clustering Techniques”. Revista de
Sistemas de Informação da FSMA, 4:18–36. 2009.

[164] Jingwei Liu and Meizhi Xu. “Kernelized Fuzzy Attribute
C-Means Clustering Algorithm.” Fuzzy Sets and Systems,
159(18):2428–2445. 2008.

[165] Huilan Luo, Furong Jing, and Xiaobing Xie. “Combining
Multiple Clusterings using Information Theory based
Genetic Algorithm”. In “2006 International Conference
on Computational Intelligence and Security”, vol. 1, pp.
84–89. doi:10.1109/ICCIAS.2006.294095. 2006.

[166] P. C. H. Ma, K. C. C. Chan, Xin Yao, and D. K. Y.
Chiu. “An Evolutionary Clustering Algorithm for Gene
Expression Microarray Data Analysis”. Evolutionary
Computation, IEEE Transactions on, 10(3):296 – 314.
doi:10.1109/TEVC.2005.859371. June 2006.

[167] J. B. MacQueen. “Some Methods for Classification and
Analysis of Multivariate Observations”. Proceedings of
5th Berkeley Symposium on Mathematical Statistics and
Probability. University of California Press., 1(14):281–
297. 1967.

[168] Sara C. Madeira and Arlindo L. Oliveira. “Biclustering
Algorithms for Biological Data Analysis: A Survey”.
IEEE/ACM Trans. Comput. Biol. Bioinformatics,
1(1):24–45. doi:http://dx.doi.org/10.1109/TCBB.2004.2.
2004.

[169] S. W. Mahfoud. Niching Methods for Genetic
Algorithms. Ph.D. thesis, University of Illinois at Urbana-
Champaign. 1995.

[170] Jianchang Mao and Anil K. Jain. “A Self-Organizing
Network for Hyperellipsoidal Clustering (HEC)”. IEEE
Transactions on Neural Networks, 7(1):16–29. 1996.

[171] Thomas M. Martinetz and Klaus J. Schulten. “A
“Neural Gas” Network Learns Topologies”. In Teuvo
Kohonen, Kai Mäkisara, Olli Simula, and Jari Kangas,

IJCA, Vol. 28, No. 2, June 2021 111

editors, “Proceedings of the International Conference
on Artificial Neural Networks (Espoo, Finland)”,
Amsterdam; New York: North-Holland, pp. 397–402.
1991.

[172] G. J. McLachlan and K. E. Basford. Mixture Models:
Inference and Applications to Clustering. Marcel Dekker
Inc, New York / Basel. 1988.

[173] Geoffrey J. McLachlan, Shu-Kay Ng, and Richard Bean.
“Robust Cluster Analysis via Mixture Models”. Austrian
Journal of Statistics, 35(2):157–174. 2006.

[174] Marina Meila and Jianbo Shi. “Learning Segmentation
by Random Walks”. In “In Advances in Neural
Information Processing Systems”, MIT Press, pp. 873–
879. 2001.

[175] Boriana L. Milenova and Marcos M. Campos. “O-
cluster: Scalable Clustering of Large High Dimensional
Data Sets”. In “Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on”,
IEEE, pp. 290–297. 2002.

[176] Gabriela Moise, Jörg Sander, and Martin Ester. “P3C:
A Robust Projected Clustering Algorithm”. In “ICDM”,
IEEE Computer Society, pp. 414–425. 2006.

[177] Gabriela Moise, Jörg Sander, and Martin Ester. “Robust
Projected Clustering”. Knowledge and Information
Systems, 14(3):273–298. 2008.

[178] B. Moore. “ART1 and Pattern Clustering”. Proceedings
Connectionist Models Summer School, pp. 174–185.
1989.

[179] Tadeusz Morzy, Marek Wojciechowski, and Maciej
Zakrzewicz. “Pattern-Oriented Hierarchical Clustering”.
In “Proceedings of the third East-European Symposium
on Advances in Databases and Information Systems -
ADBIS-99, Slovenia, LNCS 1691”, pp. 179–190. 1999.

[180] T. S. Motzkin and E. G. Straus. “Maxima for Graphs and
a New Proof of a Theorem of Turán”. Canadian Journal
of Mathematics, 17(4):533–540. 1965.

[181] Anirban Mukhopadhyay and Ujjwal Maulik. “A
Multiobjective Approach to MR Brain Image
Segmentation.” Applied Soft Computing, 11(1):872–880.
2011.

[182] Fionn Murtagh. “A Survey of Recent Advances in
Hierarchical Clustering Algorithms”. The Computer
Journal, 26(4):354–359. 1983.

[183] Megha Nangia. “Partitional Clustering”. ACM student
chapter, SIGKDD Presentation. February 2012.

[184] S. B. Needleman and C. D. Wunsch. “A General Method
Applicable to the Search for Similarities in the Amino
Acid Sequence of Two Proteins”. Journal of Molecular
Biology, 48(3):443–453. Mar. 1970.

[185] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová.
“Otakar Boruvka on Minimum Spanning Tree Problem
Translation of Both the 1926 Papers, Comments,
History”. Discrete Mathematics, 233(1):3–36. 2001.

[186] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. “On
Spectral Clustering: Analysis and an Algorithm”. In
“Advances in Neural Information Processing Systems”,
MIT Press, pp. 849–856. 2001.

[187] Raymond T. Ng and Jiawei Han. “Efficient and Effective
Clustering Methods for Spatial Data Mining”. In
“Proceedings of the 20th International Conference on
Very Large Data Bases”, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, VLDB ’94, pp. 144–155.
1994.

[188] Tim Oates, Laura Firoiu, and Paul R. Cohen. “Using
Dynamic Time Warping to Bootstrap HMM-Based
Clustering of Time Series.” In Ron Sun and C. Lee
Giles, editors, “Sequence Learning”, Springer, vol. 1828
of Lecture Notes in Computer Science, pp. 35–52. 2001.

[189] Atsuyuki Okabe and Kokichi Sugihara. Spatial Analysis
Along Networks: Statistical and Computational Methods.
John Wiley & Sons. 2012.

[190] Niina Päivinen. “Clustering with a Minimum Spanning
Tree of Scale-Free-Like Structure”. Pattern Recognition
Letters, 26(7):921–930. 2005.

[191] Massimiliano Pavan and Marcello Pelillo. “Dominant
Sets and Pairwise Clustering”. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 29(1):167–
172. doi:10.1109/TPAMI.2007.10. Jan. 2007.

[192] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning
About Data. Mathematics and Its Applications. Soviet
Series. Springer Netherlands. 1991.

[193] Karl Pearson. “LIII. On Lines and Planes of Closest Fit
to Systems of Points in Space”. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572. 1901.

[194] W. R. Pearson and D. J. Lipman. “Improved Tools for
Biological Sequence Comparison”. Proceedings of the
National Academy of Sciences of the USA, 85(8):2444–
2448. doi:10.1073/pnas.85.8.2444. Apr. 1988.

[195] Dan Pelleg and Andrew Moore. “Accelerating Exact
K-Means Algorithms with Geometric Reasoning”. In
“Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining”,
ACM, pp. 277–281. 1999.

[196] Dan Pelleg and Andrew W. Moore. “X-Means:
Extending K-Means with Efficient Estimation of the
Number of Clusters”. In “Proceedings of the Seventeenth
International Conference on Machine Learning”, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
ICML ’00, p. 727–734. 2000.

[197] Harun Pirim, Dilip Gautam, Tanmay Bhowmik, Andy D.
Perkins, and Burak Ekioglu. “Performance of an
Ensemble Clustering Algorithm on Biological Data
Sets”. Mathematical and Computational Applications,
16(1):87–96. 2011.

112 IJCA, Vol. 28, No. 2, June 2021

[198] Clara Pizzuti and Domenico Talia. “P-AutoClass:
Scalable Parallel Clustering for Mining Large Data Sets”.
Knowledge and Data Engineering, IEEE Transactions
on, 15(3):629–641. doi:10.1109/TKDE.2003.1198395.
Mar. 2003.

[199] J. Platt. Advances in Kernel Methods: Support Vector
Learning, MIT press, Cambridge, MA, chap. Fast
training of SVMs using sequential minimal optimization,
pp. 185–208. 1999.

[200] R. C. Prim. “Shortest Connection Networks and Some
Generalizations”. Bell System Technology Journal,
36(6):1389–1401. 1957.

[201] Cecilia Magdalena Procopiuc, Michael Jones, Pankaj K.
Agarwal, and T. M. Murali. “A Monte Carlo
Algorithm for Fast Projective Clustering.” In Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki,
editors, “SIGMOD Conference”, ACM, pp. 418–427.
2002.

[202] Marco Ramoni, Paola Sebastiani, and Paul R. Cohen.
“Bayesian Clustering by Dynamics.” Machine Learning,
47(1):91–121. 2002.

[203] Rocı́o Romero-Záliz, Cristina Rubio-Escudero, J. P.
Cobb, Francisco Herrera, Oscar Cordón, and Igor
Zwir. “A Multiobjective Evolutionary Conceptual
Clustering Methodology for Gene Annotation Within
Structural Databases: A Case of Study on the Gene
Ontology Database.” Evolutionary Computation, IEEE
Transactions on, 12(6):679–701. 2008.

[204] Carlos Ruiz, Myra Spiliopoulou, and Ernestina
Menasalvas. “C-DBSCAN: Density-Based Clustering
with Constraints”. In “Rough Sets, Fuzzy Sets, Data
Mining and Granular Computing”, Springer, pp.
216–223. 2007.

[205] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and
Xiaowei Xu. “Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and Its
Applications”. Data Mining and Knowledge Discovery,
2(2):169–194. doi:10.1023/A:1009745219419. Jun.
1998.

[206] E. Schikuta. “Grid-Clustering: An Efficient Hierarchical
Clustering Method for Very Large Data Sets”.
Pattern Recognition, 1996., Proceedings of the
13th International Conference on, 2:101–105. doi:
10.1109/ICPR.1996.546732. Aug. 1996.

[207] Erich Schikuta and Martin Erhart. “The BANG-
Clustering System: Grid-Based Data Analysis”. In
“Advances in Intelligent Data Analysis Reasoning about
Data”, Springer, pp. 513–524. 1997.

[208] Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik.
“Incorporating Invariances in Support Vector Learning
Machines”. In “Artificial Neural Networks ICANN 96”,
Springer, pp. 47–52. 1996.

[209] Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. “Nonlinear Component Analysis as

a Kernel Eigenvalue Problem”. Neural Computation,
10(5):1299–1319. doi:10.1162/089976698300017467.
Jul. 1998.

[210] A. J. Scott and Michael J Symons. “Clustering Methods
Based on Likelihood Ratio Criteria”. Biometrics, pp.
387–397. 1971.

[211] Shokri Z. Selim and K. Alsultan. “A Simulated
Annealing Algorithm for the Clustering Problem.”
Pattern Recognition, 24(10):1003–1008. 1991.

[212] Gholamhosein Sheikholeslami, Surojit Chatterjee, and
Aidong Zhang. “WaveCluster: A Multi-Resolution
Clustering Approach for Very Large Spatial Databases”.
In “Proceedings of the 24rd International Conference on
Very Large Data Bases”, Morgan Kaufmann Publishers
Inc., pp. 428–439. 1998.

[213] Weiguo Sheng, Allan Tucker, and Xiaohui Liu.
Clustering with Niching Genetic K-Means Algorithm,
Springer Berlin / Heidelberg, pp. 162–173. Lecture
Notes in Computer Science, Genetic and Evolutionary
Computation – GECCO 2004. 2004.

[214] Jianbo Shi and Jitendra Malik. “Normalized Cuts
and Image Segmentation”. IEEE. Reprinted from
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905. August 2000.

[215] R. Sibson. “SLINK: An Optimally Efficient Algorithm
for the Single-Link Cluster Method”. The Computer
Journal (British Computer Society), 16(1):30–34. 1973.

[216] Slowmo. “Example 2D Space with Subspace
Clusters”. URL http://commons.wikimedia.org/wiki/
File:SubspaceClustering.png. Accessed Oct. 2015. 2010.

[217] Temple F. Smith and Michael S. Waterman. “New
Stratigraphic Correlation Techniques”. The Journal of
Geology, 88(4):451–457. Jul. 1980.

[218] Padhraic Smyth. “Clustering Sequences with Hidden
Markov Models”. In Michael Mozer, Michael I. Jordan,
and Thomas Petsche, editors, “Advances in Neural
Information Processing”, MIT Press, pp. 648–654. 1996.

[219] Padhraic Smyth. “Probabilistic Model-Based Clustering
of Multivariate and Sequential Data”. In “Proceedings of
Artificial Intelligence and Statistics”, Morgan Kaufmann,
pp. 299–304. 1999.

[220] P. Sneath and R. Sokal. “Numerical Taxonomy”. In
“Numerical Taxonomy”, W. H. Freeman and Company.
1973.

[221] Peter H. A. Sneath. “The Application of Computers
to Taxonomy”. Journal of general microbiology,
17(1):201–226. 1957.

[222] R. R. Sokal and C. D. Michener. “A Statistical Method
for Evaluating Systematic Relationships”. The University
of Kansas Scientific Bulletin, 38:1409–1438. 1958.

[223] T. Sorensen. “A Method of Establishing Groups of Equal
Amplitude in Plant Sociology Based on Similarity of

IJCA, Vol. 28, No. 2, June 2021 113

Species Content and its Application to Analyzes of the
Vegetation on Danish Commons”. Biologiske Skrifter,
5:1–34. 1948.

[224] H. Spath. “Cluster Analysis Algorithms”. In “Cluster
Analysis Algorithms”, West Sussex, Ellis Horwood
Limited. 1980.

[225] Michael Steinbach, George Karypis, and Vipin Kumar.
“Efficient Algorithms for Creating Product Catalogs”.
Tech. rep., DTIC Document. 2000.

[226] H. Steinhaus. “Sur la Division des corp Materiels en
Parties”. Bulletin of Acad. Polon. Sci., 4(12):801–804.
1956.

[227] Alexander Strehl and Joydeep Ghosh. “Cluster
Ensembles – A Knowledge Reuse Framework for
Combining Multiple Partitions”. Journal of Machine
Learning Research, 3:583–617. 2002.

[228] Ron Sun and C. Lee Giles. Sequence Learning:
Paradigms, Algorithms, and Applications, vol. 1828.
Springer. 2001.

[229] Amos Tanay, Roded Sharan, Martin Kupiec, and Ron
Shamir. “Revealing Modularity and Organization in
the Yeast Molecular Network by Integrated Analysis
of Highly Heterogeneous Genomewide Data”. PNAS,
101(9):2981–2986. 2004.

[230] Chun Tang, Li Zhang, Aidong Zhang, and Murali
Ramanathan. “Interrelated Two-way Clustering: An
Unsupervised Approach for Gene Expression Data
Analysis”. In “Bioinformatics and Bioengineering
Conference, 2001. Proceedings of the IEEE 2nd
International Symposium on”, pp. 41–48. 2001.

[231] S. Theodoridis and K. Koutroumbas. Pattern
Recognition, Third Edition. Academic Press, Inc.,
Orlando, FL, USA. 2006.

[232] S. C. A. Thomopoulos, D. K. Bougoulias, and Chin-Der
Wann. “Dignet: An Unsupervised-Learning Clustering
Algorithm for Clustering and Data Fusion”. Aerospace
and Electronic Systems, IEEE Transactions on, 31(1):21–
38. doi:10.1109/7.366289. Jan 1995.

[233] Alexander P. Topchy, Anil K. Jain, and William F.
Punch. “Combining Multiple Weak Clusterings.” In
“Proceedings of the IEEE International Conference on
Data Mining”, IEEE Computer Society, pp. 331–338.
2003.

[234] Alexander P. Topchy, Anil K. Jain, and William F.
Punch. “A Mixture Model for Clustering Ensembles.”
In “Proceedings SIAM International Conference on Data
Mining”, SIAM. 2004.

[235] Sandro Vega-Pons and José Ruiz-Shulcloper. “A Survey
of Clustering Ensemble Algorithms”. International
Journal of Pattern Recognition and Artificial
Intelligence, 25(3):337–372. 2011.

[236] Boaz Vigdor and Boaz Lerner. “The Bayesian
ARTMAP”. IEEE Transactions on Neural Networks,
18(6):1628–1644. 2007.

[237] Michail Vlachos, Jessica Lin, Eamonn Keogh, and
Dimitrios Gunopulos. “A Wavelet-Based Anytime
Algorithm for K-Means Clustering of Time Series”.
In “In Proceedings Workshop on Clustering High
Dimensionality Data and Its Applications”, pp. 23–30.
2003.

[238] K. Wagstaff and C. Cardie. “Clustering with Instance-
level Constraints”. Proceedings of the Seventeenth
International Conference on Machine Learning (ICML
2000), pp. 1103–1110. 2000.

[239] Haiying Wang, Huiru Zheng, and Francisco Azuaje.
“Poisson-Based Self-Organizing Feature Maps and
Hierarchical Clustering for Serial Analysis of Gene
Expression Data”. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 4(2):163–
175. doi:http://0-dx.doi.org.innopac.library.unr.edu/10.
1109/TCBB.2007.070204. 2007.

[240] Hongjun Wang, Hanhuai Shan, and Arindam Banerjee.
“Bayesian Cluster Ensembles”. Statistical Analysis and
Data Mining, 4(1):54–70. doi:10.1002/sam.10098. 2011.

[241] Wei Wang, Jiong Yang, and Richard R. Muntz.
“STING: A Statistical Information Grid Approach to
Spatial Data Mining”. In Matthias Jarke, Michael J.
Carey, Klaus R. Dittrich, Frederick H. Lochovsky,
Pericles Loucopoulos, and Manfred A. Jeusfeld,
editors, “VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece”, Morgan Kaufmann, pp. 186–195.
1997.

[242] Wei Wang, Jiong Yang, and Richard R. Muntz.
“STING+: An Approach to Active Spatial Data
Mining.” In Masaru Kitsuregawa, Michael P. Papazoglou,
and Calton Pu, editors, “Data Engineering, 1999.
Proceedings., 15th International Conference on”, IEEE
Computer Society, pp. 116–125. 1999.

[243] Xiang Wang and Ian Davidson. “Active Spectral
Clustering”. In “Data Mining (ICDM), 2010 IEEE 10th
International Conference on”, IEEE, pp. 561–568. 2010.

[244] Chin-Der Wann and Stelios C. A. Thomopoulos.
“A Comparative Study of Self-organizing Clustering
Algorithms Dignet and ART2.” Neural Networks,
10(4):737–753. 1997.

[245] Joe H. Ward Jr. “Hierarchical Grouping to Optimize an
Objective Function”. Journal of the American Statistical
Association, 58(301):236–244. 1963.

[246] Max Welling. “Learning in Markov Random Fields
with Contrastive Free Energies”. In “Proceedings of the
Tenth International Workshop on Artificial Intelligence
and Statistics”, pp. 397–404. 2005.

[247] O. Wildi. Data Analysis in Vegetation Ecology. John
Wiley & Sons. 2010.

[248] James R. Williamson. “Gaussian ARTMAP: A
Neural Network for Fast Incremental Learning of Noisy

114 IJCA, Vol. 28, No. 2, June 2021

Multidimensional Maps.” Neural Networks, 9(5):881–
897. 1996.

[249] John H. Wolfe. “Pattern Clustering by Multivariate
Mixture Analysis”. Multivariate Behavioral Research,
5(3):329–350. 1970.

[250] Donald C. Wunsch, Thomas P. Caudell, C. David Capps,
Robert J. Marks, and R. Aaron Falk. “An Optoelectronic
Implementation of the Adaptive Resonance Neural
Network.” IEEE Transactions on Neural Networks,
4(4):673–684. 1993.

[251] Chen Xiaoyun, Chen Yi, Qi Xiaoli, Yue Min, and
He Yanshan. “PGMCLU: A Novel Parallel Grid-Based
Clustering Algorithm for Multi-Density Datasets”. In
“Web Society, 2009. SWS’09. 1st IEEE Symposium on”,
IEEE, pp. 166–171. 2009.

[252] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart
Russell. “Distance Metric Learning with Application to
Clustering with Side-Information”. Advances in Neural
Information Processing Systems, pp. 521–528. 2003.

[253] Yimin Xiong and Dit-Yan Yeung. “Time Series
Clustering with ARMA Mixtures”. Pattern Recognition,
37(8):1675–1689. 2004.

[254] Rui Xu and D. Wunsch. “Survey of Clustering
Algorithms”. Neural Networks, IEEE Transactions on,
16(3):645 –678. doi:10.1109/TNN.2005.845141. may
2005.

[255] Rui Xu and D. Wunsch. Clustering. IEEE/Wiley. 2009.
[256] Rui Xu and D. C. Wunsch. “Clustering Algorithms

in Biomedical Research: A Review”. Biomedical
Engineering, IEEE Reviews in, 3:120. 2010.

[257] Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, and Jörg
Sander. “A Distribution-Based Clustering Algorithm for
Mining in Large Spatial Databases”. In “Proceedings
of the Fourteenth International Conference on Data
Engineering”, IEEE Computer Society, Washington, DC,
USA, ICDE ’98, pp. 324–331. 1998.

[258] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas
A. J. Schweiger. “SCAN: A Structural Clustering
Algorithm for Networks”. In “Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, ACM, pp. 824–833. 2007.

[259] Ronald R. Yager. “Intelligent Control of the Hierarchical
Agglomerative Clustering Process”. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 30(6):835–
845. 2000.

[260] Donghui Yan, Ling Huang, and Michael I Jordan. “Fast
Approximate SpectralCclustering”. In “Proceedings of
the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining”, ACM, pp. 907–
916. 2009.

[261] Zhao Yanchang and Song Junde. “GDILC: a Grid-
Based Density-Isoline Clustering Algorithm”. In “2001
International Conferences on Info-Tech and Info-Net.

Proceedings (Cat. No.01EX479)”, vol. 3, pp. 140–145.
doi:10.1109/ICII.2001.983048. 2001.

[262] Qiang Yang and Xindong Wu. “10 Challenging Problems
in Data Mining Research”. International Journal of
Information Technology and Decision Making (IJITDM),
05(04):597–604. 2006.

[263] James Yolkowski. “The Clustering Illusion”. URL
http://mathlair.allfunandgames.ca/clustering.php.
Accessed Oct. 2015. 2014.

[264] Stella X. Yu and Jianbo Shi. “Multiclass Spectral
Clustering”. In “Proceedings of the Ninth IEEE
International Conference on Computer Vision - Volume
2”, IEEE Computer Society, Washington, DC, USA,
ICCV ’03, pp. 313–319. 2003.

[265] Stefanos Zafeiriou and Nikolaos A. Laskaris. “On
the Improvement of Support Vector Techniques for
Clustering by Means of Whitening Transform.” Signal
Processing Letters, IEEE, 15:198–201. 2008.

[266] Charles T Zahn. “Graph-Theoretical Methods for
Detecting and Describing Gestalt Clusters”. Computers,
IEEE Transactions on, 100(1):68–86. 1971.

[267] B. Zhang. “Generalized K-Harmonic means –
Dynamic Weighting of Data in Un-supervised Learning”.
Proceedings of the 1st SIAM ICDM, Chicago, IL, USA,
pp. 1–13. 2001.

[268] Dao-Qiang Zhang and Song-Can Chen. “A Novel
Kernelized Fuzzy C-means Algorithm with Application
in Medical Image Segmentation”. Artificial Intelligence
in Medicine, 32(1):37–50. 2004.

[269] Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
“BIRCH: An Efficient Data Clustering Method for Very
Large Databases”. SIGMOD Record, 25(2):103–114.
doi:10.1145/235968.233324. Jun. 1996.

[270] Shangming Zhou and John Q. Gan. “An Unsupervised
Kernel Based Fuzzy C-means Clustering Algorithm
with Kernel Normalisation”. International Journal
of Computational Intelligence and Applications,
04(04):355–373. doi:10.1142/S1469026804001379.
2004.

[271] H. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao.
“Gaussian Mixture Density Modeling, Decomposition,
and Applications”. IEEE Trans. Image Processing,
5(9):1293–1302. Sep. 1996.

Yan Yan received her MS degree in Computer Science and
Engineering from the University of Nevada, Reno. After this
she worked in industry as a Software Engineer. She then came
back to the University of Nevada, Reno and received her Ph.D
in Computer Science and Engineering in 2019.

She is currently working as a Software Engineering
Consultant. Her research interests are in Cancer Subtyping and
Clustering of large data sets.

IJCA, Vol. 28, No. 2, June 2021 115

Frederick C. Harris Jr. received his
BS and MS degrees in Mathematics
and Educational Administration from
Bob Jones University, Greenville, SC,
USA in 1986 and 1988 respectively.
He then went on and received his
MS and Ph.D. degrees in Computer
Science from Clemson University,
Clemson, SC, USA in 1991 and 1994
respectively.

He is currently a Professor in the Department of Computer

Science and Engineering and the Director of the High
Performance Computation and Visualization Lab at the
University of Nevada, Reno, USA. He is also the Nevada
State EPSCoR Director and the Project Director for Nevada
NSF EPSCoR. He has published more than 290 peer-reviewed
journal and conference papers along with several book chapters.
He has had 14 PhD students and 80 MS Thesis students
finish under his supervision. His research interests are in
parallel computation, simulation, computer graphics, and virtual
reality. He is also a Senior Member of the ACM, and a Senior
Member of the International Society for Computers and their
Applications (ISCA).

IJCA, Vol. 28, No. 2, June 2021 115

Clustered Particle Swarm Optimization Using Self-Organizing Maps

Yongwon Park*, Harika Kilari* and Sanjeev Baskiyar*

Auburn University, Auburn, AL 36849

Abstract

Premature convergence of particles is known to be the
main cause of local optima in particle swarm optimization
(PSO). Such premature convergence limits the use of PSO
for the multimodal function optimization problems which may
have more than one optimum of a function and many local
minima. In this paper, we use a novel approach called clustered
PSO or CPSO, which clusters particles periodically around
sample vectors (particles) using self-organizing maps. Such
clustering provides sufficient diversity providing CPSO with
the opportunity to explore other solutions while proactively
escaping local optima. Furthermore, it enables each cluster
of particles to search on the solution space concurrently for
multimodal optimization problems being readily able to escape
many local minima to reach the minimum. The abilities of
the proposed approach in escaping local optima and finding a
global solution were evaluated through simulations on the test
problems used by other researchers. The results of simulations
conclusively demonstrate that CPSO is highly effective in
avoiding local minima for multimodal function optimization
problems as well as reducing the particle population with every
iteration.

Key Words: Clustering; particle swarm optimization; local
minima; self-organizing maps

1 Introduction

Image synthesis of dynamic objects such as clouds, smoke,
water, and fire are known to be difficult to simulate due to
their fuzziness. Researchers have studied particle systems in
which particles have their behavior [11] and have tried to
simulate such natural dynamic objects. Many scientists have
also been interested in the movement of a flock of birds or a
school of fish to discover underlying rules that make possible
their aggregate motion. The aggregate motion enables them
to find food quickly and protects them from predators through
early detection and the spread of information. Intrigued by
such social behavior, Kennedy and Eberhart [4] developed the
particle swarm optimization (PSO) method to apply their natural

*Department of Computer Science and Software Engineering
Emails: yongwonpark@gmail.com, hzk0041@tigermail.auburn.edu, and
baskiyar@eng.auburn.edu

behavior to problem-solving. In PSO, particles simulate the
social behavior of a flock of birds, which cooperate to find
food (goal), in a way that each one remembers its personal best
location ever visited called “personal best,” and shares the local
information with their neighbor to identify “local best” location
within a group.The “local best” of a group is shared with other
groups to identify the “global best” value. The local information
refers to individual cognition and the global information to
social interaction. Using the local and global information,
a swarm of particles is able to cooperate and explore the
solution space effectively to find an optimal solution. One of
the advantages of PSO is the particle’s prompt convergence
on solutions by exploring the solution space at a fast speed
like a flock of birds moving fast, but in astonishingly perfect
harmony. However, the solution by early convergence may
cause a local solution if done prematurely. This drawback of
PSO can be attributed to its lack of ability to indicate premature
convergence. The premature convergence phenomenon is
commonly observed in evolutionary methods such as Genetic
Algorithms (GA). In the case of a GA, it is known that high
selection pressure in choosing only superior offsprings for new
generations results in premature convergence. This is because
the high selection pressure restricts the diversity of the new
population, searching for solution space limited to local areas.
Therefore, a search may get stuck in a local optimum. Riget
and Vesterstrlm attributed the premature convergence of PSO
to the fast information flow between particles, which causes
particles to cluster early around local minima [12]. Since little
diversity among the population is considered the main cause
of premature convergence, many researchers [6] [18] [1] have
tried to avoid premature convergence in a way that provides
sufficient diversity for particles at the indication of premature
convergence. The earlier methods like k-means clustering had
an overhead of how to decide an optimum value of k, and also
could not consider the dynamic factor in particle population
update by using fixed pre-defined parameters. Later complex
hierarchical and graphical clustering techniques have been
devised which had low applicability due to structural limitations
in data analysis. However, it remains a very difficult problem to
identify the sign of premature convergence. Furthermore, using
such a reactive approach may be difficult to escape local minima
for optimization problems. In this research, we discuss a novel
Cluster-PSO (CPSO) that we developed in 2011, using self-

ISCA Copyright© 2021

116 IJCA, Vol. 28, No. 2, June 2021

organizing maps (SOM), which is known as an unsupervised
learning method called “Kohonen vector” [5]. Alkazemi and
Mohan [1], and Seo et al.[13] used clustered particles to search
the solution space concurrently. However, the search may not
be adaptive since the population of the group is static. On the
other hand, CPSO using the SOM technique is able to make the
search adaptive to the solution space by dynamically updating
the population of clustered particles. The unsupervised learning
method of SOM is able to cover large solution space effectively
by periodically clustering particles around randomly created
Kohonen vectors, thereby preventing local optima. The SOM
helps to simulate the high dimensional topology information of
particle swarm into 2D or 3D vectors by using mathematical
quantification and projection.The preprocessing of raw data into
clusters by SOM helps in efficient local search, which in turn
helps in maintaining diversity in the optimization process.

The remainder of this paper has been organized as follows.
Section 2 describes the related works, Section 3, the PSO model,
and Section 4 the CPSO algorithm. In Section 5, we discuss the
results and in Section 6 we make concluding remarks.

2 Related work

The PSO model simulates a swarm of particles moving in
an m-dimensional solution space where a particle corresponds
to a candidate solution characterized by m attributes. It is
represented in the solution space by its position vector ~xi, and
its velocity is represented by a velocity vector~vi.

The velocity of the ith particle of the swarm and its projected
position in the dth dimension are defined by the following two
equations:

~vid(t +1) =~vid(t)+ c1 · rand() · (~lid−~xid(t))

+c2 · rand() · (~gid−~xid(t))
(1)

~xid(t +1) =~xid(t)+~vid(t +1) (2)

where:

• n is the size of the swarm
• m is the number of dimensions in the solution space
• i = 1, . . . ,n
• d = 1, . . . ,m
• ~lid is the local best position of particle i on the dth

dimension
• ~gi is the global best position of particle i in the dth

dimension
• c1 is the learning rate of particles for individual cognition
• c2 is the learning rate of particles for social interaction
• rand() is the random function with the output in the range
(0 . . .1)

Shi and Eberhart [16] introduced a parameter inertia weight ω

into the basic PSO:

~vid(t +1) = ω ·~vid(t)+ c1 · rand() · (~lid−~xid(t +1))
+c2 · rand() · (~gid−~xid(t +1))

(3)

where ω weights the magnitude of the old velocity~vid(t). They
found the range of (0.9 . . .1.2) a good area to choose ω from.

Many researchers have tackled the premature convergence
problem in PSO. They tried to overcome it in a reactive way
that provides diversity to particles at the indication of premature
convergence to escape a local optimum. Krink and Riget [6]
provided diversity for particles upon indication of a collision.
The indication of the collision was determined based on the
distance between particles, and subsequently, diversity was
provided in a way that particles bounce away randomly or
make a U-turn by increasing their velocity to collide against the
boundary of the solution space. The tailored PSO outperformed
the basic PSO for several benchmark functions. However, the
reactive method may not be sufficient for complex optimization
problems. Once converged at a local optimum, clustered on
local best by their nature, particles would struggle to escape
the local optimum without substantial diversity. On the other
hand, CPSO explores solution space by explicitly clustering
particles around randomly created sample vectors, thus being
able to escape local optima for optimization problems. Wei,
Guangbin and Dong [19] presented Elite Particle Swarm with
Mutation (EPSM). EPSM tried to take advantage of best fit
particles to avoid wasting time visiting the solution space with
poor fitness values. To do this, particles with poor fitness
were substituted by elite particles with better fitness. But such
elitism decreases the diversity of particles. To provide diversity
EPSM employed a mutation operator so that the global best
particle may be mutated to generate a new particle. EPSM
outperformed the Standard Particle Swarm Optimization [16]
with respect to the quality of the solution. In contrast to
the elitism, Wang and Qiu [18] tried to give opportunities to
inferior particles to search solution space. Their approach was
motivated by the observation that a search process is very likely
to be dominated by several super particles, which is often not
good in the long term. In order to alleviate the dominance
by super particles, the selection probability of a particle was
set inversely proportional to its original fitness. Next, a
particle is selected in the roulette wheel manner to explore
the solution space. Such a procedure is expected to mitigate
the high selection pressure by super particles. Their approach
outperformed other known algorithms in terms of solution
quality but took additional computational time for the fitness
scaling and roulette selecting process. Veeramachaneni and
Osadciw [17] claimed that particles by nature oscillate between
local optima and a global optimum, wasting time moving in the
same direction to converge at a global optimum. Therefore, they
made particles attract toward the best positions visited by their
neighbors. In other words, particles are influenced by successful
neighbors to explore the solution space. This algorithm was
further improved by concurrent PSO implementation [2] in
which two particle groups worked concurrently, with each group
tracing particles independently and sharing the information
about the best particle. Similarly, the Multi-Phase Particle
Swarm Optimization algorithm (MPSO) employed multiple
groups of particles, each changing a search direction in every

IJCA, Vol. 28, No. 2, June 2021 117

phase to increase population diversity [1]. Seo et al. [13]
presented multi-grouped particle swarm optimization (MGPSO)
algorithm in which each group searches its own best solution
independently. They prevented each group from interfering
with other groups by regulating the radius of each group. Both
MPSO and MGPSO provide concurrent search through clusters
of particles. However, since early grouped particles search the
solution space throughout the search, it may not be adaptive
in a pathological environment. On the other hand, CPSO can
be more adaptive to the varying environments by periodically
updating the population of a group randomly. Sha and Yang [14]
proposed APSO K-means clustering for speaker recognition
where ant colony algorithm and PSO algorithm were combined
with K-means clustering. In K-means clustering the number
of groups is fixed, whilst the number of groups in CPSO
is updated dynamically throughout the search of the solution
space. Ratnaweera, Watson and Saman [10] used random
dimension and time-varying coefficients to compute particle
velocities during mutation.This technique has a drawback of
loss of valuable data in some dimensions. It also has an
overhead of data re-computation from scratch in case of any
malfunction due to the hierarchical structure. The other major
concern is outdated data, which results in diversity loss. To
handle it, Li and Yang [7] devised a new dynamic optimization
technique. It conducts a detailed search by dividing search space
into sub-swarms. But, it faces the “two-step forward, one-step
backward” phenomenon, as weakness in one dimension affects
the overall fitness of a particle. Another dynamic technique
proposed by Daniel and Xiaodong [9], Species-based Particle
Swarm Optimization is effective in dealing with multimodal
optimization functions in both static and dynamic environments.
A networked structured PSO, called NS-PSO [8] has been
proposed in which adjacent particles are connected in the
neighborhood of a topological space and share the information
of their best positions. These connections have been used to
enhance the local search and increase diversification.

3 The CPSO Model

The CPSO is a modified version of PSO with an additional
process of clustering particles. In the CPSO model, particles
are periodically clustered around sample vectors using SOM to
provide particles with enough diversity to prevent them from
prematurely converging to local optima. The CPSO procedure
has been described in Procedure 1. In Eq. 4, ~Vp(t + 1) is
the new velocity of particles, α(t) controls the learning rate
where t is the generation number of particles and Φ(p, t) is
the neighborhood function which determines the degree of
the neighborhood between BMP and particle p. We took a
Gaussian function as the neighborhood function for particles
which denotes the lateral particle interaction and the degree of
excitation of the particle. The Gaussian function which returns
values between 0 and 1 is a commonly used simple model for
simulating a large number of random values. Gaussian function
for particles returns a value close to 1 if the particle is close

Procedure 1: Procedure CPSO
Step 1. Initialize particles
Step 2. Randomly create sample particles s in the solution
space, with velocity ~Vs(t), where 1 ≤ s ≤ k, k being the
maximum number of sample vectors
Step 3. Traverse each particle p, 0 ≤ p < n, where n is the
swarm size, and find the best matching particle (BMP) using
the fitness value.
Step 4. Update the velocity of particles in the neighborhood
of BMP by drawing them closer to sample vectors using the
following formulas:

~Vp(t +1) = ~Vp(t)+Φ(p, t)α(t)(~Vs(t)− ~Vp(t)) (4)

~xp(t +1) =~xp(t)+~vp(t +1) (5)

Step 5. Evolve particles using PSO.
Step 6. Go to Step 2, if t < MaxGeneration and F > θ

(where F is the gross increment in particle fitness on objective
optimization functions, and θ=̃0 is a very small value)

to BMP (neighbors of BMP). The neighborhood function is
defined [15] as:

Φ(p, t) = exp
(
− (p−b)2

2α(t)2

)
(6)

where:

• p is the current particle
• b is the best matching particle (BMP)
• t is the Time/Generation
• α(t) ∈ (0 . . .1) is the learning rate

Diversity is required during early phases of optimization when
local optima are computed, but as generations exhaust, the
learning rate should decrease to allow convergence at global
optima. Initially, the learning rate will be close to 1 and
gradually it will decrease. The number of neighbors is reduced
as the generation number grows. From Step 1 through Step
4, the learning process chooses the best particle from each
sample vector based on fitness value and clusters the particles
around the vectors by updating the positions of particles in
the neighborhood. This process gives a chance to explore a
new possible solution space that may contain an optimal or
near-optimal solution. In Step 5, each cluster of particles
is evolved by recomputing the sample vectors based on the
updated particle distribution. These processes of clustering
and evolving particles are iterated until the generation number
is exhausted or a stopping condition that identifies no more
improvements in fitness on objective functions is met. Figure
1 shows particles (clear circles) moving toward three randomly
generated sample vectors (dark circles) to form clusters.

118 IJCA, Vol. 28, No. 2, June 2021

Figure 1: Clustering particles using self-organizing maps.

4 Simulations and Results

To run the tests, we implemented PSO and CPSO using
the Java programming language. It is very cumbersome to
conduct simulations on high-dimensional functions due to large
computational overhead. For instance, if we choose a mixed
range of dimension functions, it is very difficult to compare their
results. The SOM uses vector projection to convert complex
particle swarm topology into low-dimensional vectors. So it
is economical to run simulations on a set of low-dimensional
functions with different cluster sizes and generations as input. In
the simulations, PSO and CPSO were run for four well-known
objective functions namely DeJong’s F2, Schaffer F6, Rastrigin,
and Griewank. These are the same functions that were used
by Kennedy [3]. The optimization performances of PSO and
CPSO were compared. The corresponding objective functions
have been described as follows:

f (x,y) = 100(x2− y)2 +(1− x)2 (7)

where −2.048 < x,y < 2.048

f (x,y) = 0.5+
(sin2(

√
x2− y2−0.5)

(1+0.001(x2 + y2)2 (8)

where −100≤ x,y≤ 100

f (x) = 100+
10

∑
i=1

x2
i −10cos(2πxi) (9)

f (x) =
100

∑
i=1

x2
i

4000
−

100

∏
i=1

cos(
xi√

i
)+1 (10)

where −600≤ xi ≤ 600
De Jong’s F2 function, represented by Eq. (7), is a two-

dimensional function with a deep valley with the shape of a

Figure 2: Rastrigin’s function

Figure 3: Griewank function

parabola. The Schaffer F6 function represented by Eq. (8)
is known to be very difficult to optimize, having infinite local
minima and one global minimum at (x,y) = (0,0). Rastrigin
represented by Eq. (9) and Griewank represented by Eq. (10)
are multimodal functions that have many local minima. Figures.
2 and 3 show the Rastrigin’s function and the Griewank’s
function, respectively, which have many local minima shown
by the “valleys.” Both have the global minimum at (0,0, . . . ,0).
Figures. 4-7 show minimum fitness values found by particles
exploring the solution space under the objective functions
described above. Figure 4 shows the results of PSO and CPSO
on the F2 function. For the F2 function, both CPSO and
PSO perform well, early finding a minimum. Both converge
early to a minimum, but CPSO continues to search for a better
solution (which in this case does not exist). In Figure 5, it is
shown that PSO prematurely converges to a solution, whereas
CPSO escapes several local optima to reach global optima.
Again, Figure 6 shows that for the Rastrigin’s optimization
problem (9), CPSO enables particles to find a global solution,
oscillating between local minima and global minimum, whereas

IJCA, Vol. 28, No. 2, June 2021 119

particles of PSO converge at a local minimum. Finally, Figure 7
shows CPSO outperforms PSO dramatically for a very complex
multimodal optimization problem. PSO converges early at local
minima, whereas CPSO quickly finds a global minimum. The
results clearly demonstrate that our approach is very effective
for highly complex multimodal optimization problems.

Figure 4: CPSO vs. PSO for De Jong’s F2

Figure 5: CPSO vs. PSO for Schaffer F6

5 Conclusions

We addressed the problem of premature convergence
observed in PSO. In this research, we focused on providing
enough diversity for particles to escape local minima. CPSO
explicitly clusters particles around sample vectors to enable
particles to escape local minima, and explore new possible
solution space which may contain better solutions. Simulation
results show that CPSO outperforms PSO significantly for
complex optimization problems and avoids local minima
yielding global solutions. Although CPSO makes an extensive

Figure 6: CPSO vs. PSO for Rastrigin F1

Figure 7: CPSO vs. PSO for Griewank

search within the solution space, it limits the search time by
limiting the particles which explore the solution space using
self-organizing maps. The research strongly suggests that
CPSO is very effective for complex multimodal problems. In
future work, we will study finding early signs of premature
convergence for preventing such premature convergence.

Acknowledgments

We wish to thank the anonymous reviewers for their feedback
which made the paper much better.

References

[1] B. Al-kazemi and C. K. Mohan, “Training Feedforward
Neural Networks using Multi-phase Particle Swarm
Optimization,” Proceedings of the 9th International
Conference on Neural Information Processing, 5:2615-
2619, Nov. 2002.

120 IJCA, Vol. 28, No. 2, June 2021

[2] S. Baskar and P.N. Suganthan, “A Novel Concurrent Particle
Swarm Optimization,” Proceedings of the Congress on
Evolutionary Computation, 1:792-796, June 2004.

[3] J. Kennedy, “Stereotyping: Improving Particle Swarm
Performance With Cluster Analysis,” Proceedings of the
2000 Congress on Evolutionary Computation, 2:1507-
1512, 2000.

[4] J. Kennedy and R. Eberhart, “Particle Swarm
Optimization,” Proceedings of IEEE International
Conference on Neural Networks, 4:1942-1948, Nov-
Dec 1995.

[5] T. Kohonen, “The Self-Organizing Map,” Neurocomputing,
2(2):1-6, Nov. 1993.

[6] T. Krink, J.S. Vesterstrom and J. Riget, “Particle swarm
Optimization with spatial particle extension,” Proceedings
of the Congress on Evolutionary Computation, 2:1474-
1479, 2002.

[7] C. Li and S. Yang, “A Clustering Particle Swarm
Optimizer For Dynamic Optimization,” IEEE Congress on
Evolutionary Computation, pp. 439-446, May 2009.

[8] H. Matshushita, Y. Nishio and C.K. Tse, “Network-
Structured Particle Swarm Optimizer that Considers
Neighborhood Distances and Behaviors,” Journal of Signal
Processing, 18(6):291-302, Nov. 2014.

[9] D. Parrott and X. Li, “Locating And Tracking Multiple
Dynamic Optima By A Particle Swarm Model Using
Speciation,” IEEE Transactions on Evolutionary
Computation, 10(4):440-458, Aug. 2006.

[10] A. Ratnaweera, S. K. Halgamuge and H. C. Watson,
“Self-Organizing Hierarchical Particle Swarm Optimizer
With Time-Varying Acceleration Coefficients,” IEEE
Transactions on Evolutionary Computation, 8(3):240-255,
June 2004.

[11] W. T. Reeves, “Particle Systems–a Technique for
Modeling a Class of Fuzzy Objects,” ACM Trans. Graph.,
2(2):91-108, 1983.

[12] J. Riget and J.S. Vesterstrom, A Diversity-Guided Particle
Swarm Optimizer - the ARPSO, Tech Report - Dept. of
Computer Science, University of Aarhus, Denmark, 2002.

[13] J.-H. Seo, C.-H. Im, C.-G. Heo, J.-K. Kim, H.-K. Jung
and C.-G. Lee, “Multimodal Function Optimization Based
On Particle Swarm Optimization,” IEEE Transactions on
Magnetics, 42(4):1095-1098, 2006.

[14] M. Sha and H. Yang, “Speaker Recognition Based on
APSO-K-means Clustering Algorithm,” IEEE International
Conference on Artificial Intelligence and Computational
Intelligence, 2:440-444, Nov. 2009.

[15] A. Sharma and C. W. Omlin, “Performance Comparison
of Particle Swarm Optimization with Traditional Clustering
Algorithms used in Self-Organizing Map,” World Academy
of Science, Engineering and Technology, 3(3):718-729,
Mar. 2009.

[16] Y. Shi and R. Eberhart, “A Modified Particle Swarm
Optimizer,” Proceedings of IEEE International Conference

on Evolutionary Computation, IEEE World Congress on
Computational Intelligence, pp. 69-73, May 1998.

[17] K. Veeramachaneni, T. Peram, C.K. Mohan and L.
A. Osadciw, “Optimization using Particle Swarms with
Near Neighbor Interactions,” Lecture Notes in Computer
Science - from Proceedings of the Genetic and Evolutionary
Computation Conference, 2723:110-121, 2003.

[18] F. Wang and Y. Qiu, “A Modified Particle Swarm
Optimizer With Roulette Selection Operator,” Proceedings
of IEEE International Conference on Natural Language
Processing and Knowledge Engineering, pp. 765-768, Oct.
2005.

[19] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm
Optimization with Mutation,” Asia Simulation Conference
- Proceedings of the 7th IEEE International Conference on
System Simulation and Scientific Computing, pp. 800-803,
Oct. 2008.

Yong-Won Park received the
bachelor’s degree in Computer
Science from Kwangwoon University,
Seoul, Korea and the master’s and
Ph.D. degrees in Computer Science
and Software Engineering from
Auburn University. He is a senior
researcher in Samsung S1, Seoul.
His research interests are in machine

learning and data mining.

Harika Kilari received the B.Tech.
(Honours) degree in Computer
Software Engineering from IIIT,
Hyderabad and the MS degree in
Computer Science from Auburn
University. She has worked as
a Systems Software Engineer in
NVIDIA, India and is currently a

Senior Camera Engineer in Qualcomm, San Diego, CA.

Sanjeev Baskiyar is a Full Professor
in the Department of Computer
Science and Software Engineering
at Auburn University, Auburn,
Alabama. He received the Ph.D. and
MSEE degrees from the University
of Minnesota, Minneapolis, and
the B.E. degree in Electronics

and Communications from the Indian Institute of Science,
Bangalore. His current research interests are in the areas
of computer architecture, edge computing, optimization,
scheduling, and real-time and embedded computing. In
addition to academic appointments, he also worked in the
hardware and software industry.

Journal Submission
The International Journal of Computers and Their Applications is published four times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.
__

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Wenying Feng. Email: wfeng@trentu.ca.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence. Also, please
include email, telephone, and fax information should further contact be needed.

4. Note: Papers shorter than 10 pages long will be returned.

B. Manuscript Style:
1. WORD DOCUMENT: The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X

11 inch pages. Or it can be single spaced double column.
LaTex DOCUMENT: The text is to be a double column (10 point font) in pdf format.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first initials followed

by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and year.
5. The figures are to be integrated in the text after referenced in the text.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word format
should be submitted to the Editor-in-Chief. If one wished to use LaTex, please see the corresponding LaTex template.

2. The submission may be on a CD/DVD or as an email attachment(s). The following electronic files should be included:

• Paper text (required).
• Bios (required for each author).

• Author Photos are to be integrated into the text.

• Figures, Tables, and Illustrations. These should be integrated into the paper text file.
3. Reminder: The authors photos and short bios should be integrated into the text at the end of the paper. All figures, tables,

and illustrations should be integrated into the text after being mentioned in the text.
4. The final paper should be submitted in (a) pdf AND (b) either Word or LaTex. For those authors using LaTex, please

follow the guidelines and template.
5. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are

transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced a publication charge of $500.00 USD to
cover part of the cost of publication. For ISCA members, publication charges are $400.00 USD publication charges are required.

Revised 2020

mailto:wfeng@trentu.ca

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 28 N
o. 2, June 2021

	Cover page for June 2021
	International Society for Computers
	Guest Editoral: Special Issue from the ISCA CATA 2021 . 75
	Improvement of Apriori Algorithm for Missing Itemset Identification and Faster Execution . 76
	Anjan Dutta, Runba Ganguli, Punyasha Chatterjee, Narayan C. Debnath, and Soumya Sen
	Anjan Dutta, Runba Ganguli, Punyasha Chatterjee, Narayan C. Debnath, and Soumya Sen

	An Adaptable Memory System Using Reconfigurable Row DRAM to Improve Performance of Multi core for Big Data . 84
	Nagi Mekhiel
	Yan Yan and Frederick C. Harris, Jr.

	Clustered Particle Swarm Optimization Using Self-Organizing Maps 115
	Yongwon Park, Harika Kilari, and Sanjeev Baskiyar

	IJCA Jrnl inside front cover June2021-updated
	A publication of the International Society for Computers and Their Applications
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	hongpeng@brandeis.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna
	Princess Sumaya University
	for Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun
	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	Guest Editorial draft 3
	1 Dutta, Gangali, Chatterlee, Debnath, Sen ISCA Journal
	Abstract
	1 Introduction
	2 Related Work
	3 Motivation and Objective
	4 Methodology
	4.1 Identifying the Hidden Business Critical Patterns
	4.2 Reduction of the Computational Complexity for Frequent Pattern Identification

	5 Results and Discussion
	6 Conclusion
	References

	2 Mekhiel June 2021
	3 Yan Harris IJCA June 2021
	4d Park, Baskiyar
	Journal Submission Instructions2021
	Journal Submission

	IJCA Jrnl back outside cover June 2021

